Splittings and the isogeny problem
In dimension 2
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The dimension 1 case



Isogenies

Isogeny-based cryptography is a type of post-quantum cryptography that has
been considered in NIST’s standardisation process.

Thelgeneral isogeny problem)(in dimension 1) underlies the security of many

isogeny-based schemes (e.g., SQlsign)

In this work we look at the problem in dimension 2 and decrease the concrete
complexity of the best attack (due to Costello-Smith)



Isogenies

Let £/ I-,» be an elliptic curve . You can write
E:y"=x"+Ax+B

where A, B € [sz.

p2

Consider some other elliptic curve E'/I
E:yv*=x>+AX"+B

where A, B’ € [sz.
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Isogenies
E:y"=x"+Ax+B and E:y*=x"4+AX+DB

An Isogeny

Q. E—-E

is a pair of rational functions ¢, ¢, € [ 2(x, y) such that for every
P = (xp, yp) € E([I_:p) the point

¢(P) — (¢1('XP9 yP)a ¢2(XP9 YP))
lies on £’ (and ¢(O) = O’ for the point at infinity).



Isogenies

Fact. Any isogeny ¢ = (¢, ¢»,) can be written with ¢, € |

Example: Over [

E:y?=x+x and E:y*=x>—4x

given by the equations

2 2
x“+1 y(xc—1)
¢ = y

X X2

N ——
Given only in terms of x (no y)



Isogenies

Fact Any |sogeny gb (gbl, ¢,) can be wrltten  with gbl el

Example: Over [

E:y?=x+x and E:y?=x>+16x"+10

given by the equations

(x — 10)(x = )(x* — 8x + 9)(x* — 6x — 5)
? = x(x + 5)2(x — 9)2 a

- —_—
Given only in terms of x (no y)



Isogenies

Fact. Any isogeny ¢ = (¢, ¢h,) can be written with ¢h; € |

The degree of @ is

deg(¢) = max{deg(numerator ¢,), deg(denominator ¢, )}

Example: Over [,

E:y’=x"+x and E:y?=x>—4x

b = (x2+1’y(x22—1))
X X

given by the equations Degree 2




Isogenies

Fact Any |sogeny gb (¢1, ¢,) can be wrltten | with ¢1 el

The degree of @ is

deg(¢) = max{deg(numerator ¢,), deg(denominator ¢, )}

Example: Over [,

E:y>’=x"+x and E':y?=x+16x"+ 10

given by the equations Degree 6

b = (x — 10)(x = 7)(x* — 8x + 9)(x* — 6x — 5)
- x(x + 5)%(x — 9)? N



J-invariant
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If and only if

Fact. A pair of elliptic curves are isomorphic (over |

:p)

J(E) = J(E)

This j(E) is known as the j-invariant of £ and is defined by

J(E) = 78 .33,




The isogeny problem in dimension 1

Problgm (I'Ehe Isogeny problem in dimension 1).Given}5 p;irof supersingular
elliptic curves £ and L, over the finite field I, find an isogeny L} — L,.
| f +




Supersingular isogeny graph I',(p; ©)

We have:

1. Vertices: j-invariants of

supersingular elliptic curves o s
over [‘pz
¢
2. Edges: £-isogenies
¢ o
®

£ = 2 graph is 3-reqular



Supersingular isogeny graph I',(p; ©)

We have:
1. Vertices: j-invariants of o
supersingular elliptic curves o
over I ¢
®
2. Edges: £-isogenies ®
o
¢

£ = 2 graph is 3-reqular



|
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Properties:

Supersingular isogeny graph I',(p; ©)

We have:

1. Vertices: j-invariants of o
supersingular elliptic curves ¢
over I ¢

®

2. Edges: £-isogenies ®

Large: ~ p/12 nodes

Great mixing
(Ramanujan graph!

= - —

£ = 2 graph is 3-reqular



The isogeny problem in dimension 1

Problgm (I'Ehe Isogeny problem in dimension 1).Given}5 p;irof supersingular
elliptic curves £ and L, over the finite field I, find an isogeny L} — L,.

® o o o
o ¢ . o . . . ° .
. o
J(EY) ¢ ¢ ° ® ° ° ¢ ¢
. ® o o o ° . o | o



The isogeny problem in dimension 1

— ——— —

Problgm (I'Ehe iIsogeny problem in dimension 1). Given a péirof supersingular

elliptic curves £ and L, over the finite field I, find an isogeny L} — L,.




The isogeny problem in dimension 1

Problgm (I'Ehe Isogeny problem in dimension 1).Given}5 p;irof supersingular
elliptic curves £ and L, over the finite field I, find an isogeny L} — L,.

® o o o
° ° °
° ° ¢ o ° ¢
| ° °
J(EY) ¢ ° ® ° ° ¢ ¢
. ® ° ® ° . o ¢ ®



The isogeny problem in dimension 1

— ——— —

Problgm (I'Ehe iIsogeny problem in dimension 1). Given a péirof supersingular

elliptic curves £ and L, over the finite field I, find an isogeny L} — L,.




The isogeny problem in dimension 1

Problem (I'Ehe Isogeny problem in dimension 1).GiverTg p;iro susi
elliptic curves £ and L, over the finite field I, find an isogeny L} — L,.
|




The isogeny problem in dimension 1

ProbI;m (I'Ehe Isogeny problém INn dimension 1).Given}5 p;irof supersingular
elliptic curves £ and L, over the finite field I, find an isogeny L} — L,.
| f +

Theorem (Delfs—Galbraith). There exists a 5(\@) algorithm to solve the
supersingular isogeny problem in dimension 1.




The dimension 2 case



Why dimension 2?

The SIDH attacks showed that understanding higher dimensional isogenies

appears to be crucial in navigating the supersingular isogeny graph in
dimension 1.

However comparatively little is actually known about the (superspecial) isogeny
graph in dimension 2!



Abelian surfaces

Abelian surfaces come In 2 flavours

» Products of elliptic curves E; X E,

» Jacobians of genus 2 curves Jac(C)



The iIsogeny problem In dimension 2

Problgm f (I'Tweisogeny problem In dimension 2).Given?pafr of uppa
2.




Superspecial isogeny graph I',(p; ¢)
We have:

1. Vertices: (I]:p—isomc)rphism

classes of p.p.) superspecial

abelian surfaces over J‘pz

2. Edges: (£, £)-isogenies



Superspecial isogeny graph I',(p; ¢)
We have:

1. Vertices: (I]:p—lsomorphlsm

classes of p.p.) superspemal =
abelian surfaces over |
2. Edges: (¢, £)-isogenies \j

—

£ = 2 graph is 15-regular



Superspecial isogeny graph I',(p; ¢)

We have:

1. Vertices: (I]:p—lsomorphlsm

classes of p.p.) superspecial =
abelian surfaces over )
2. Edges: (£, £)-isogenies \j

IV--

| Proertie:

; Large: O(p>) nodes N —

Great mlxmg' 1‘ £ = 2 graph is 15-regular

w
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Superspecial isogeny graph I',(p; ¢)

We have:

1. Vertices: (I]:p—isomc)rphism

classes of p.p.) superspecial

abelian surfaces over L,

Writing &',(p) for the vertex set of
['5(p; ) we get

SH(p) = FHr(p) U Ey(p)

2. Edges: (£, £)-isogenies

Properties:

3 products
Great mlxmg' f‘ O(p ) " 0(]?2)

—————— e

Large O(p3) nodes Jacobians Elliptic
1 |
l



The Costello—Smith Algorithm

— o
PA @ o
Step 1: PA PA o . .
Take a (2,2)-isogeny | A o .
@ @ ® "
@ ® ®
START NODE ® ® o .
@ [A] @ ° o ®
@ @
¢ @ o
@
’ ¢ ° @ o o @
@
’ o ¢ ’ ¢ o ® END NODE
¢ @

[A; ]



The Costello—Smith Algorithm

o o ‘ ‘
1: o ® o
Take a (2,2)-isogeny o ©® ° PA .
@ ® o
® ’ o ¢
¢ PA o ¢
¢ ¢ ¢ ¢
@
o @ @
o ¢ ® o
¢ ° ® ¢ | ® END NODE

[A; ]



The Costello—Smith Algorithm

o o ‘ ‘
Step 3: PA PA ¢ . ®
1: o ® o
Take a (2,2)-isogeny o ©® ° PA .
® @
o ¢ ¢
° ¢ °
o ¢ o
O ¢
@ ¢
® o ¢ END NODE

[A; ]



The Costello—Smith Algorithm

Step O(p):

Take a (2,2)-isogeny |

¢ ' o ® END NODE
A, ]



The Costello—Smith Algorithm

Step O(p) part 2:

Take a (2,2)-isogeny |

@
® END NODE
[A5]




The Costello—Smith Algorithm

— ——

Final step:

Run the O (/)

algorithm from
‘dimension 1

START NODE
o [A]

@
@
o END NODE
|A5]




The Costello—Smith Algorithm

To summarise the Costello—Smith Algorithm:

1. Walk from the start vertex in I',(p; 2) until
we hit a vertex in &,(p)



The Costello—Smith Algorithm

To summarise the Costello—Smith Algorithm:
There are O(p°) total vertices in

1. Walk from the start vertex in I'5(p; 2) until [,(p;2) and O(p?) are in &,(p)
we hit a vertex in &,(p) so this takes O(p) steps



The Costello—Smith Algorithm

To summarise the Costello—Smith Algorithm:

1. Walk from the start vertex in I',(p; 2) until ’5"
we hit a vertex in &,(p) (p )
2. Walk from the end vertex in 1'5(p; 2) until 5(1?)
we hit a vertex in &,(p)

3. Run the algorithm in dimension 1 0 (\/];)

4. Return the path.

Theorem (Costello—Smith). There exists a 5(]9) algorithm to solve the isogen
problem in dimension 2.

— — — —_— —




Splittings and accelerating
Costello—Smith



(N, N)—splittings

Every (p.p.) superspecial abelian surface has

Dy = N3H—(f + D2+ 1)
£|N

(N, N)-isogenous neighbours. Thisis ~ N>.

Compute all (N, N)—isogenous neighbours for big V.

x Very expensive to compute (N, N)—isogeny.



(N, N)—splittings

Every (p.p.) superspecial abelian surface has

Dy = N3H—(f + D2+ 1)
£|N

(N, N)-isogenous neighbours. Thisis ~ N>.

Detect if any (V, N)—isogenous neighbour is £ X E’in one go!

—
(N, N)—split



Accelerated Costello—Smith Algorithm

® ®
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Accelerated Costello—Smith Algorithm

o
o . . ] ® ¢
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Accelerated Costello—Smith Algorithm

Etc, etc, etc, for
appropriate N

Appropriate is an interesting
question. The bigger the
telescope the costlier it will be
to build



Accelerated Costello—Smith Algorithm
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Accelerated Costello—Smith Algorithm
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Use splitting detection:| ¢ ° o ®
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Accelerated Costello—Smith Algorithm

°
Use splitting detection:| ¢ ° o o ®
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Detecting (N, N)—splittings



Detecting (V, N)—splittings

Detect if Jac(C) is (N, N)—spilit.

Fact 1. There exist 3 (normaiised) “Igusa—CIelogzh invariants”
J1(C), JH(C), J3(C) which uniquely determine isomorphism clagses [Jac(C)].
*

o

_ S— _ _ .

Like the j-invariant these are a
few multiplications to compute



Detecting (V, N)—splittings

Detect if Jac(C) is (N, N)—spilit.

Fact 1 .TheErMaiised) § Igusa—CIeb;zh invariants”
J1(C), Jo(C), J3(C) which uniquely determine isomorphism classes [Jac(C)].

} 9, ~ {p.p. ab. surfaces}/ ~

®
[Jac(C)] /




Detecting (V, N)—splittings

Detect if Jac(C) is (N, N)—spilit.

Fact 2. There exists a “Humbert surface” #(N*) C </, such that Jac(C) is
(N, N)—spilit if and only if the point [Jac(C)] € #Z(N?) C .

———

} 9, ~ {p.p. ab. surfaces}/ ~

®
[Jac(C)] /




Detecting (V, N)—splittings

Detect if Jac(C) is (N, N)—spilit.

Fact 2. There exists a “Humbert surface” #(N*) C </, such that Jac(C) is
(N, N)—spilit if and only if the point [Jac(C)] € #Z(N?) C .

———

} 9, ~ {p.p. ab. surfaces}/ ~

|
[Jac(C)] /

(N, N)-split




Detecting (V, N)—splittings

Detect if Jac(C) is (N, N)—spilit.

Fact 2. There exists a “Humbert surface” #(N*) C </, such that Jac(C) is
(N, N)—spilit if and only if the point [Jac(C)] € #Z(N?) C .

———

] 9, ~ {p.p. ab. surfaces}/ ~

|
mC)] Not (N, N)-split




Detecting (V, N)—splittings

\“ . e —— —'——"w
A%S/ / Theorem (Kumar). For N < 11

|

on: = (), ay, a3) f Explicit polynomials!

} 9, ~ {p.p. ab. surfaces}/ ~

yd




Detecting (N, N)—splittings Only & handiul of

Approach: multiplications for
small NV

Jac(C) is (N, N)—split & 3Ir, s € [, such that

a;(r,s) =J(C) and a(r,s) =J),(C) and ax(r,s) = J;(C)

Check if there Is a solution to the equations
a,(r,s) —j(C) =0 ]
ay(r,s) —J,(C) =0
ax(r,s) — J5(C) =0 [

Use technigues
like resultants,
polynomial gcd



What'’s the speed-up?



Speed-up

Total #IF, Total #IF, mults.
mults. per node revealed
2 175 12.5
3 767 19.2
4 4882 46.9
5, 18818 120.6
6 29188 52.1
7 182641 456.6
8 325606 395.2
9 582474 539.3
10 1082007 495.4
11 3237198 2211.2

Cost of a (2,2)—step

D F,-mults.
(bits) per node
50 579
100 1176
150 1575
950 9772
1000 11346



Speed-up

Walks in I2(2;p)

without additional searching

Walks in I%(2;p)

w. split searching in I'>(N;p)

117] (optimised in Section E) This work
D F,-mults. set F,-mults. improv.
(bits) per node Ne{..} per node factor
50 579 {2,3} 35 16.5x
100 1176 {2,3} 48 24.5x
150 1575 {3,4} 54 29.2x
950 9772 {4,6} 69
1000 11346 {4,6} 71




Further work



Endomorphisms

Humbert surfaces exist for discriminants all discriminants /D and

parametrise abelian surfaces with an endomorphism of degree D. The
same technigues work!

Question. If you know that A; and A, endomorphisms of small degree, can you
give an algorithm better than the O (p) Costello—Smith algorithm to solve the |
{superspecial iIsogeny problem?




