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Splittings and the isogeny problem 
in dimension 2



The dimension 1 case



Isogenies

Isogeny-based cryptography is a type of post-quantum cryptography that has 
been considered in NIST’s standardisation process.


The general isogeny problem (in dimension 1) underlies the security of many 
isogeny-based schemes (e.g., SQIsign)


In this work we look at the problem in dimension 2 and decrease the concrete 
complexity of the best attack (due to Costello–Smith)



Isogenies
Let  be an elliptic curve (  ). You can write





where . 


Consider some other elliptic curve 





where . 

E/𝔽p2 p ≠ 2,3

E : y2 = x3 + Ax + B

A, B ∈ 𝔽p2

E′￼/𝔽p2

E′￼ : y′￼2 = x′￼3 + A′￼x′￼+ B′￼

A′￼, B′￼ ∈ 𝔽p2

4A3 + 27B2 ≠ 0

E/ℝ



Isogenies

E : y2 = x3 + Ax + B and E′￼ : y′￼2 = x′￼3 + A′￼x′￼+ B′￼

An isogeny 





is a pair of rational functions  such that for every 
 the point


  


lies on  (and  for the point at infinity).

ϕ : E → E′￼

ϕ1, ϕ2 ∈ 𝔽p2(x, y)
P = (xP, yP) ∈ E(𝔽p)

ϕ(P) = (ϕ1(xP, yP), ϕ2(xP, yP))

E′￼ ϕ(O) = O′￼



Isogenies

Example: Over  




given by the equations


𝔽23

E : y2 = x3 + x and E′￼ : y′￼2 = x′￼3 − 4x′￼

ϕ = ( x2 + 1
x

,
y(x2 − 1)

x2 )
Given only in terms of  (no )x y

Fact. Any isogeny  can be written with .ϕ = (ϕ1, ϕ2) ϕ1 ∈ 𝔽p2(x)



Isogenies

Example: Over  




given by the equations


𝔽23

E : y2 = x3 + x and E′￼ : y′￼2 = x′￼3 + 16x′￼+ 10

ϕ = ( (x − 10)(x − 7)(x2 − 8x + 9)(x2 − 6x − 5)
x(x + 5)2(x − 9)2

, . . . )

Fact. Any isogeny  can be written with .ϕ = (ϕ1, ϕ2) ϕ1 ∈ 𝔽p2(x)

Given only in terms of  (no )x y



Isogenies

The degree of  is
ϕ

deg(ϕ) = max{deg(numerator ϕ1), deg(denominator ϕ1)}

Fact. Any isogeny  can be written with .ϕ = (ϕ1, ϕ2) ϕ1 ∈ 𝔽p2(x)

Example: Over  




given by the equations


𝔽23

E : y2 = x3 + x and E′￼ : y′￼2 = x′￼3 − 4x′￼

ϕ = ( x2 + 1
x

,
y(x2 − 1)

x2 )
Degree 2



Isogenies

The degree of  is
ϕ

deg(ϕ) = max{deg(numerator ϕ1), deg(denominator ϕ1)}

Fact. Any isogeny  can be written with .ϕ = (ϕ1, ϕ2) ϕ1 ∈ 𝔽p2(x)

Example: Over  




given by the equations


𝔽23

E : y2 = x3 + x and E′￼ : y′￼2 = x′￼3 + 16x′￼+ 10

ϕ = ( (x − 10)(x − 7)(x2 − 8x + 9)(x2 − 6x − 5)
x(x + 5)2(x − 9)2

, . . . )
Degree 6



-invariantj

Fact. A pair of elliptic curves are isomorphic (over ) if and only if 


.


This  is known as the -invariant of  and is defined by


𝔽p

j(E) = j(E′￼)

j(E) j E

j(E) = 28 ⋅ 33 ⋅
A3

4A3 + 27B2



The isogeny problem in dimension 1
Problem (The isogeny problem in dimension 1). Given a pair of supersingular 
elliptic curves  and  over the finite field  find an isogeny .E1 E2 𝔽p2 E1 → E2



 graph is 3-regularℓ = 2

Supersingular isogeny graph Γ1(p; ℓ)
We have:


1. Vertices: -invariants of 
supersingular elliptic curves 
over 


2. Edges: -isogenies

j

𝔽p2

ℓ



 graph is 3-regularℓ = 2

Supersingular isogeny graph Γ1(p; ℓ)
We have:


1. Vertices: -invariants of 
supersingular elliptic curves 
over 


2. Edges: -isogenies

j

𝔽p2

ℓ



Supersingular isogeny graph Γ1(p; ℓ)

 graph is 3-regularℓ = 2

We have:


1. Vertices: -invariants of 
supersingular elliptic curves 
over 


2. Edges: -isogenies

j

𝔽p2

ℓ

Properties: 

Large:  nodes


Great mixing 
(Ramanujan graph!)

∼ p/12



The isogeny problem in dimension 1
Problem (The isogeny problem in dimension 1). Given a pair of supersingular 
elliptic curves  and  over the finite field  find an isogeny .E1 E2 𝔽p2 E1 → E2

j(E1)

j(E2)



The isogeny problem in dimension 1
Problem (The isogeny problem in dimension 1). Given a pair of supersingular 
elliptic curves  and  over the finite field  find an isogeny .E1 E2 𝔽p2 E1 → E2

j(E1)

j(E2)



The isogeny problem in dimension 1
Problem (The isogeny problem in dimension 1). Given a pair of supersingular 
elliptic curves  and  over the finite field  find an isogeny .E1 E2 𝔽p2 E1 → E2

j(E1)

j(E2)



The isogeny problem in dimension 1
Problem (The isogeny problem in dimension 1). Given a pair of supersingular 
elliptic curves  and  over the finite field  find an isogeny .E1 E2 𝔽p2 E1 → E2

j(E1)

j(E2)



The isogeny problem in dimension 1
Problem (The isogeny problem in dimension 1). Given a pair of supersingular 
elliptic curves  and  over the finite field  find an isogeny .E1 E2 𝔽p2 E1 → E2

j(E1)

j(E2)



The isogeny problem in dimension 1
Problem (The isogeny problem in dimension 1). Given a pair of supersingular 
elliptic curves  and  over the finite field  find an isogeny .E1 E2 𝔽p2 E1 → E2

Theorem (Delfs—Galbraith). There exists a  algorithm to solve the 
supersingular isogeny problem in dimension 1.

Õ ( p)



The dimension 2 case



Why dimension 2?

The SIDH attacks showed that understanding higher dimensional isogenies 
appears to be crucial in navigating the supersingular isogeny graph in 
dimension 1.


However comparatively little is actually known about the (superspecial) isogeny 
graph in dimension 2!



Abelian surfaces

Abelian surfaces come in 2 flavours


• Products of elliptic curves 


• Jacobians of genus 2 curves 

E1 × E2

Jac(C)



The isogeny problem in dimension 2
Problem (The isogeny problem in dimension 2). Given a pair of superspecial 
(p.p.) abelian surfaces  and  over the finite field  find an isogeny .A1 A2 𝔽p2 A1 → A2



We have:


1. Vertices: ( -isomorphism 
classes of p.p.) superspecial 
abelian surfaces over 


2. Edges: -isogenies

𝔽p

𝔽p2

(ℓ, ℓ)

Superspecial isogeny graph Γ2(p; ℓ)



 graph is 15-regularℓ = 2

We have:


1. Vertices: ( -isomorphism 
classes of p.p.) superspecial 
abelian surfaces over 


2. Edges: -isogenies

𝔽p

𝔽p2

(ℓ, ℓ)

Superspecial isogeny graph Γ2(p; ℓ)



 graph is 15-regularℓ = 2

Properties: 

Large:  nodes


Great mixing!

O(p3)

We have:


1. Vertices: ( -isomorphism 
classes of p.p.) superspecial 
abelian surfaces over 


2. Edges: -isogenies

𝔽p

𝔽p2

(ℓ, ℓ)

Superspecial isogeny graph Γ2(p; ℓ)



Properties: 

Large:  nodes


Great mixing!

O(p3)

Writing  for the vertex set of 
 we get


𝒮2(p)
Γ2(p; ℓ)

𝒮2(p) = 𝒥2(p) ⊔ ℰ2(p)

Jacobians 
∼ O(p3)

Elliptic 
products 
∼ O(p2)

We have:


1. Vertices: ( -isomorphism 
classes of p.p.) superspecial 
abelian surfaces over 


2. Edges: -isogenies

𝔽p

𝔽p2

(ℓ, ℓ)

Superspecial isogeny graph Γ2(p; ℓ)



The Costello—Smith Algorithm [E1 × E2]

Step 1: 

Take a -isogeny(2,2)

START NODE 
[A1]

END NODE 
[A2]



The Costello—Smith Algorithm [E1 × E2]

Step 2: 

Take a -isogeny(2,2)

START NODE 
[A1]

END NODE 
[A2]



The Costello—Smith Algorithm [E1 × E2]

Step 3: 

Take a -isogeny(2,2)

START NODE 
[A1]

END NODE 
[A2]



The Costello—Smith Algorithm [E1 × E2]

Step : 

Take a -isogeny

O(p)

(2,2)

START NODE 
[A1]

END NODE 
[A2]



The Costello—Smith Algorithm [E1 × E2]

Step  part 2: 

Take a -isogeny

O(p)

(2,2)

START NODE 
[A1]

END NODE 
[A2]



The Costello—Smith Algorithm [E1 × E2]

Final step: 

Run the  
algorithm from 
dimension 1

Õ ( p)

START NODE 
[A1]

END NODE 
[A2]



The Costello—Smith Algorithm
To summarise the Costello—Smith Algorithm:


1. Walk from the start vertex in  until 
we hit a vertex in 

Γ2(p; 2)
ℰ2(p)



The Costello—Smith Algorithm
To summarise the Costello—Smith Algorithm:


1. Walk from the start vertex in  until 
we hit a vertex in 

Γ2(p; 2)
ℰ2(p)

There are  total vertices in 
 and  are in  

so this takes  steps

O(p3)
Γ2(p; 2) O(p2) ℰ2(p)

O(p)

Assuming mild conjecture about 
distribution of  in the graphℰ2(p)



The Costello—Smith Algorithm
To summarise the Costello—Smith Algorithm:


1. Walk from the start vertex in  until 
we hit a vertex in 


2. Walk from the end vertex in  until 
we hit a vertex in 


3. Run the algorithm in dimension 1


4. Return the path.

Γ2(p; 2)
ℰ2(p)

Γ2(p; 2)
ℰ2(p)

Õ (p)

Õ (p)

Õ ( p)

Theorem (Costello—Smith). There exists a  algorithm to solve the isogeny 
problem in dimension 2.

Õ (p)



Splittings and accelerating 
Costello—Smith



—splittings(N, N)
Every (p.p.) superspecial abelian surface has 


 


-isogenous neighbours. This is . 

DN = N3∏
ℓ∣N

1
ℓ3

(ℓ + 1)(ℓ2 + 1)

(N, N) ∼ N3

Compute all —isogenous neighbours for big .(N, N) N

Very expensive to compute —isogeny.(N, N)



—splittings(N, N)
Every (p.p.) superspecial abelian surface has 


 


-isogenous neighbours. This is . 

DN = N3∏
ℓ∣N

1
ℓ3

(ℓ + 1)(ℓ2 + 1)

(N, N) ∼ N3

Detect if any —isogenous neighbour is  in one go!(N, N) E × E′￼

—split(N, N)



Accelerated Costello—Smith Algorithm

Use splitting detection: 

Is it —split?(2,2)

 checked15



Accelerated Costello—Smith Algorithm

Use splitting detection: 

Is it —split?(3,3)

 checked40



Accelerated Costello—Smith Algorithm

Etc, etc, etc, for 
appropriate N

Appropriate is an interesting 
question. The bigger the 

telescope the costlier it will be 
to build



Accelerated Costello—Smith Algorithm

Didn’t find a splitting? 

Take a —step(2,2)



Accelerated Costello—Smith Algorithm

Use splitting detection: 

Is it —split?(2,2)

 checked15



Accelerated Costello—Smith Algorithm

Use splitting detection: 

Is it —split?(3,3)

 checked40



Detecting —splittings(N, N)



Detecting —splittings(N, N)
Detect if  is —split.Jac(C) (N, N)

Like the -invariant these are a 
few multiplications to compute

j

Fact 1. There exist 3 (normalised) “Igusa—Clebsch invariants” 
 which uniquely determine isomorphism classes .j1(C), j2(C), j3(C) [Jac(C)]



Detecting —splittings(N, N)

Fact 1. There exist 3 (normalised) “Igusa—Clebsch invariants” 
 which uniquely determine isomorphism classes .j1(C), j2(C), j3(C) [Jac(C)]

[Jac(C)]

𝒜2 ≈ {p.p. ab. surfaces}/ ∼

Detect if  is —split.Jac(C) (N, N)



Detecting —splittings(N, N)

Fact 2. There exists a “Humbert surface”  such that  is 
—split if and only if the point .

ℋ(N2) ⊂ 𝒜2 Jac(C)
(N, N) [Jac(C)] ∈ ℋ(N2) ⊂ 𝒜2

[Jac(C)]

𝒜2 ≈ {p.p. ab. surfaces}/ ∼

Detect if  is —split.Jac(C) (N, N)



Detecting —splittings(N, N)

Fact 2. There exists a “Humbert surface”  such that  is 
—split if and only if the point .

ℋ(N2) ⊂ 𝒜2 Jac(C)
(N, N) [Jac(C)] ∈ ℋ(N2) ⊂ 𝒜2

[Jac(C)]

𝒜2 ≈ {p.p. ab. surfaces}/ ∼

ℋ(N2)

-split(N, N)

Detect if  is —split.Jac(C) (N, N)



Detecting —splittings(N, N)

Fact 2. There exists a “Humbert surface”  such that  is 
—split if and only if the point .

ℋ(N2) ⊂ 𝒜2 Jac(C)
(N, N) [Jac(C)] ∈ ℋ(N2) ⊂ 𝒜2

[Jac(C)]

𝒜2 ≈ {p.p. ab. surfaces}/ ∼

ℋ(N2)

Not -split(N, N)

Detect if  is —split.Jac(C) (N, N)



Detecting —splittings(N, N)

𝒜2 ≈ {p.p. ab. surfaces}/ ∼

ℋ(N2)

𝔸2
r,s

φN2 = (α1, α2, α3) Explicit polynomials!

Theorem (Kumar). For N ≤ 11



Detecting —splittings(N, N)
Approach:


 is —split   such that 
Jac(C) (N, N) ⇔ ∃r, s ∈ 𝔽p

α1(r, s) = j1(C) and α2(r, s) = j2(C) and α3(r, s) = j3(C)

Check if there is a solution to the equations








α1(r, s) − j1(C) = 0

α2(r, s) − j2(C) = 0

α3(r, s) − j3(C) = 0

Use techniques 
like resultants, 
polynomial gcd

Only a handful of 
multiplications for 

small N



What’s the speed-up?



Cost of a —step(2,2)

Speed-up



Speed-up



Further work



Endomorphisms
Humbert surfaces exist for discriminants all discriminants  and 
parametrise abelian surfaces with an endomorphism of degree . The 
same techniques work!

D
D

Question. If you know that  and  endomorphisms of small degree, can you 
give an algorithm better than the  Costello—Smith algorithm to solve the 
superspecial isogeny problem?

A1 A2
Õ (p)


