Splittings and the isogeny problem in dimension 2

Sam Frengley (joint work with Maria Corte-Real Santos and Craig Costello)

The dimension 1 case

been considered in NIST's standardisation process.

isogeny-based schemes (e.g., SQIsign)

complexity of the best attack (due to Costello–Smith)

- Isogeny-based cryptography is a type of post-quantum cryptography that has
- The general isogeny problem (in dimension 1) underlies the security of many

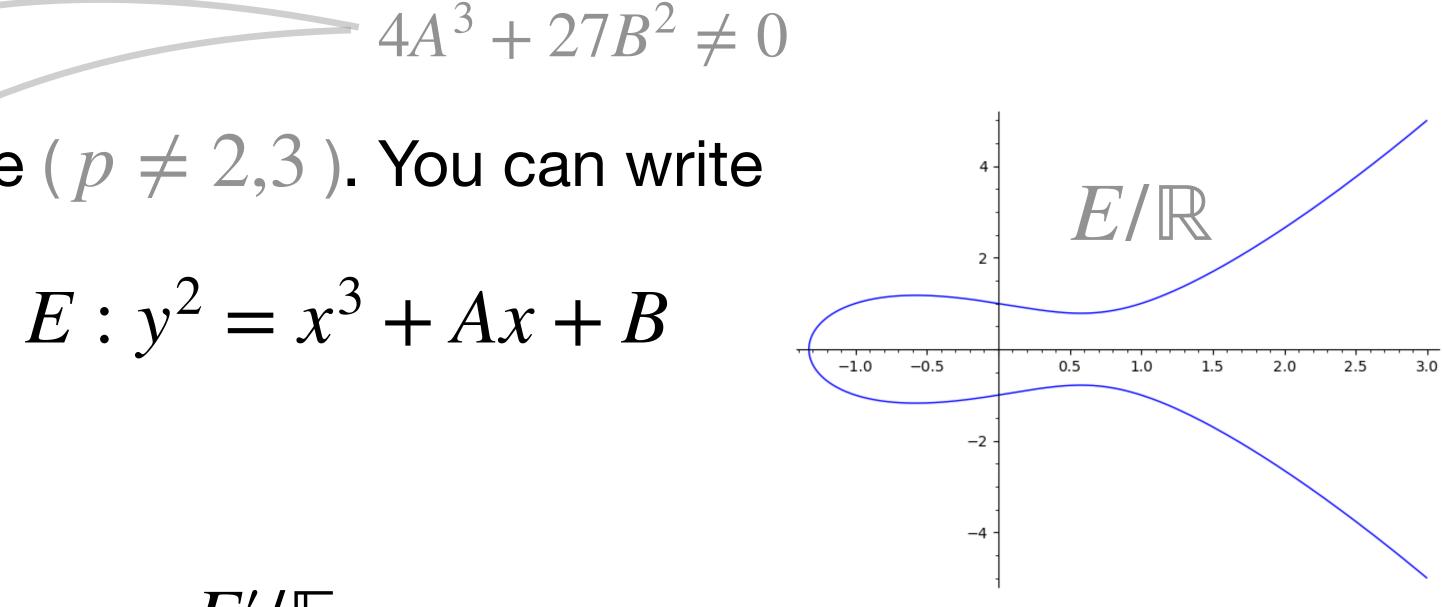
In this work we look at the problem in dimension 2 and decrease the concrete

Let E/\mathbb{F}_{p^2} be an elliptic curve ($p \neq 2,3$). You can write

where $A, B \in \mathbb{F}_{p^2}$.

Consider some other elliptic curve E'/

where $A', B' \in \mathbb{F}_{p^2}$.



$$\mathbb{F}_{p^2}$$

 $E': y'^2 = x'^3 + A'x' + B'$

Isogenies $E: y^2 = x^3 + Ax + B$ and $E': y'^2 = x'^3 + A'x' + B'$

An isogeny

is a pair of rational functions $\phi_1, \phi_2 \in \mathbb{F}_{p^2}(x, y)$ such that for every $P = (x_P, y_P) \in E(\overline{\mathbb{F}}_p)$ the point

lies on E' (and $\phi(O) = O'$ for the point at infinity).

$\phi \colon E \to E'$

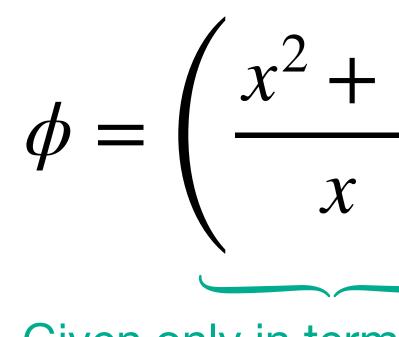
$\phi(P) = (\phi_1(x_P, y_P), \phi_2(x_P, y_P))$

<u>Fact.</u> Any isogeny $\phi = (\phi_1, \phi_2)$ can be written with $\phi_1 \in \mathbb{F}_{p^2}(x)$.

Example: Over \mathbb{F}_{23}

$$E: y^2 = x^3 + x$$
 and $E': y'^2 = x'^3 - 4x'$

given by the equations



$$\left(-\frac{1}{x^2}, \frac{y(x^2-1)}{x^2}\right)$$

Given only in terms of *x* (no *y*)

<u>Fact.</u> Any isogeny $\phi = (\phi_1, \phi_2)$ can be written with $\phi_1 \in \mathbb{F}_{p^2}(x)$.

Example: Over \mathbb{F}_{23}

$$E: y^2 = x^3 + x$$
 and

given by the equations

$$\phi = \left(\frac{(x-10)(x-7)(x^2-8x+9)(x^2-6x-5)}{x(x+5)^2(x-9)^2}, \dots\right)$$

$$E': y'^2 = x'^3 + 16x' + 10$$

Given only in terms of *x* (no *y*)

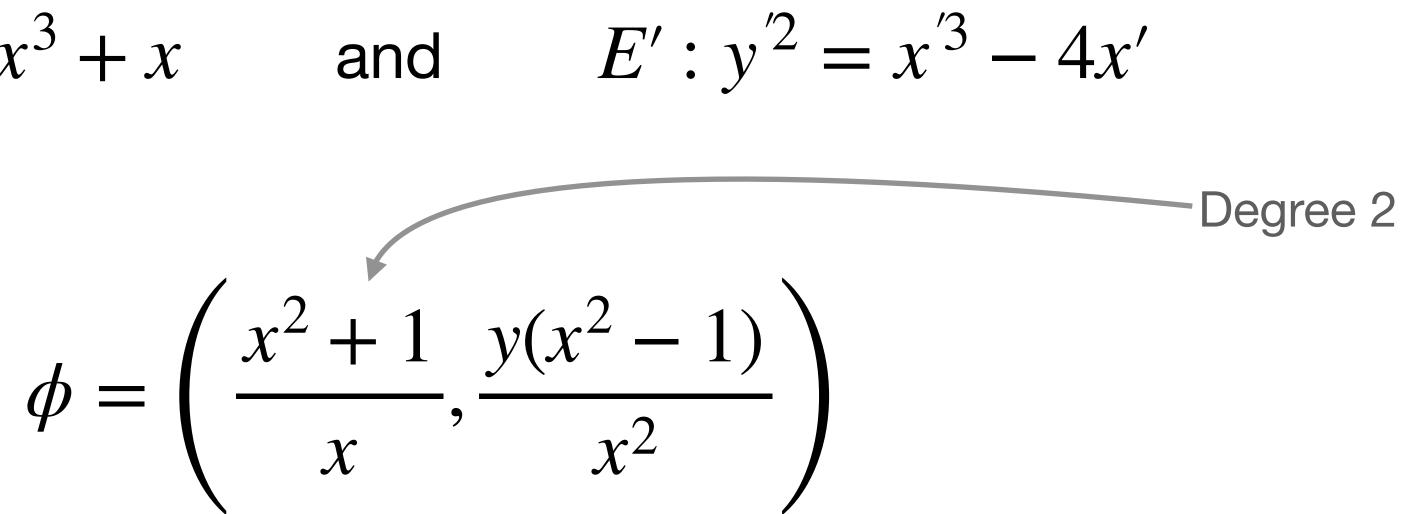
The **degree of** ϕ is

 $deg(\phi) = max \{ deg(numerator \phi_1), deg(denominator \phi_1) \}$

Example: Over \mathbb{F}_{23}

$$E: y^2 = x^3 + x$$

given by the equations



<u>Fact.</u> Any isogeny $\phi = (\phi_1, \phi_2)$ can be written with $\phi_1 \in \mathbb{F}_{p^2}(x)$.

<u>Fact.</u> Any isogeny $\phi = (\phi_1, \phi_2)$ can be written with $\phi_1 \in \mathbb{F}_{p^2}(x)$.

The **degree of** ϕ is

Example: Over \mathbb{F}_{23}

given by the

$$E: y^{2} = x^{3} + x \quad \text{and} \quad E': y^{2} = x^{3} + 16x' + 10$$

e equations
$$\phi = \left(\frac{(x - 10)(x - 7)(x^{2} - 8x + 9)(x^{2} - 6x - 5)}{x(x + 5)^{2}(x - 9)^{2}}, \dots\right)$$

 $deg(\phi) = max \{ deg(numerator \phi_1), deg(denominator \phi_1) \}$

j-invariant

Fact. A pair of elliptic curves are isomorphic (over \mathbb{F}_p) if and only if

j(E)

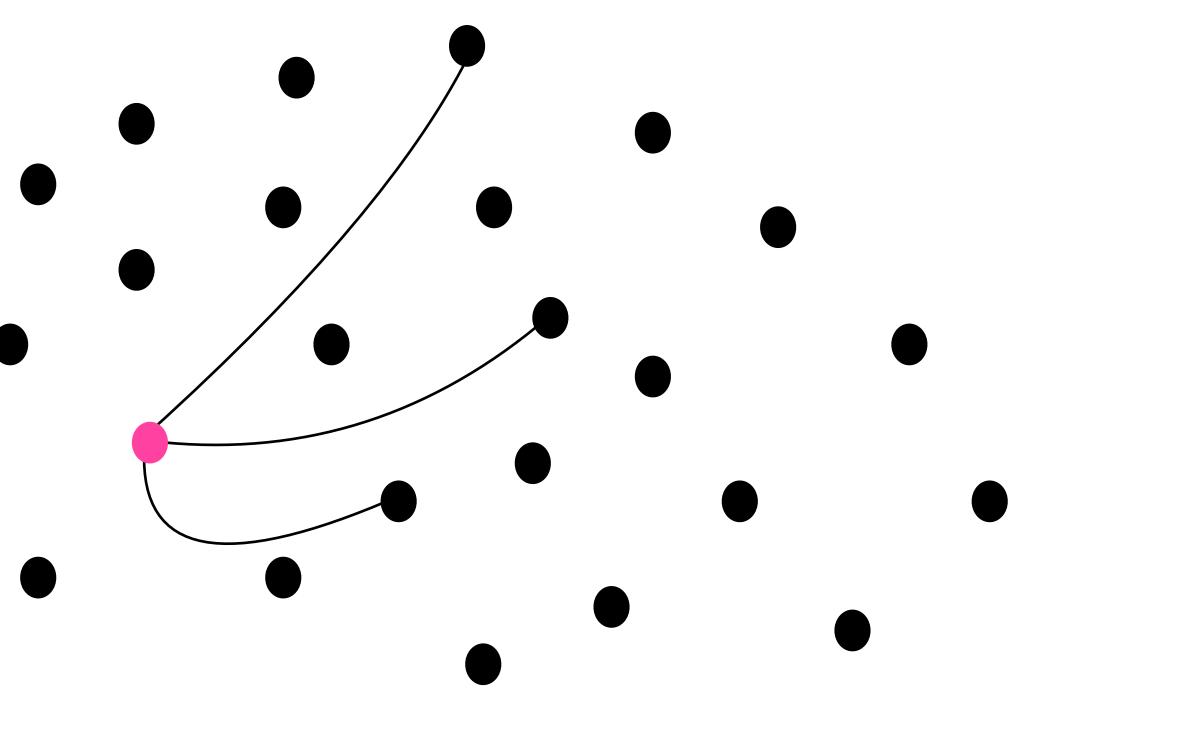
This j(E) is known as the *j*-invariant of *E* and is defined by

$$j(E) = 2^8 \cdot 3^3 \cdot \frac{A^3}{4A^3 + 27B^2}$$

$$= j(E').$$

Supersingular isogeny graph $\Gamma_1(p; \mathscr{C})$ We have:

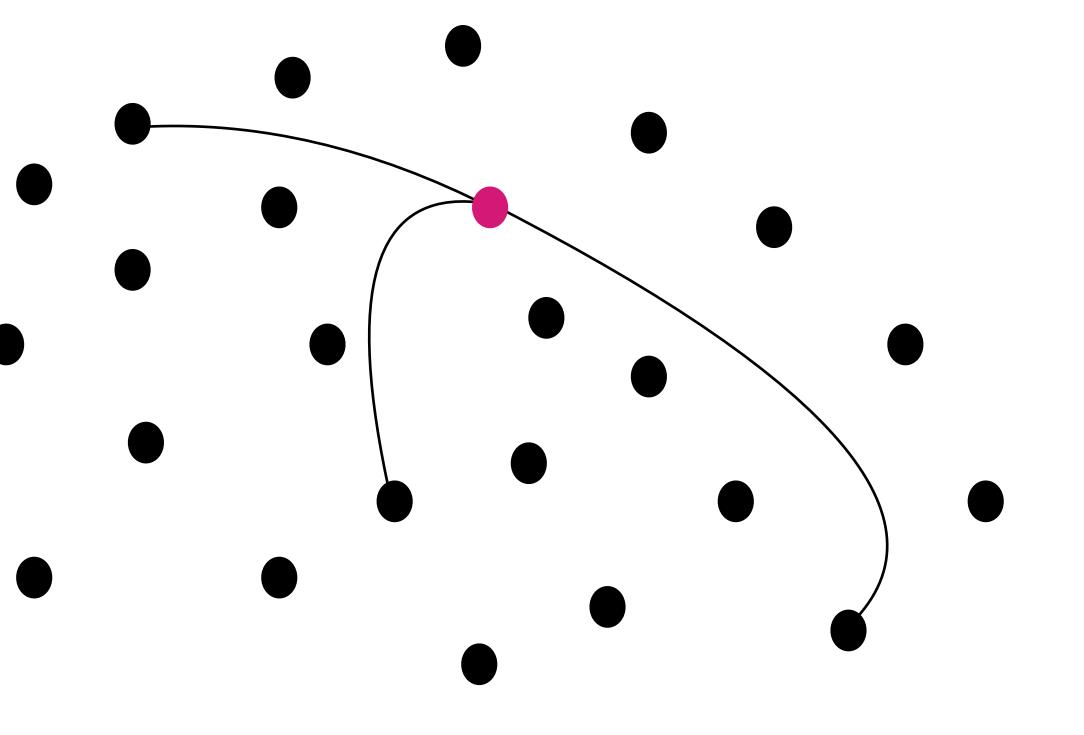
- 1. Vertices: *j*-invariants of supersingular elliptic curves over \mathbb{F}_{p^2}
- 2. Edges: ℓ -isogenies



 $\ell = 2$ graph is 3-regular

Supersingular isogeny graph $\Gamma_1(p; \mathscr{C})$ We have:

- 1. Vertices: *j*-invariants of supersingular elliptic curves over \mathbb{F}_{p^2}
- 2. Edges: ℓ -isogenies



 $\ell = 2$ graph is 3-regular

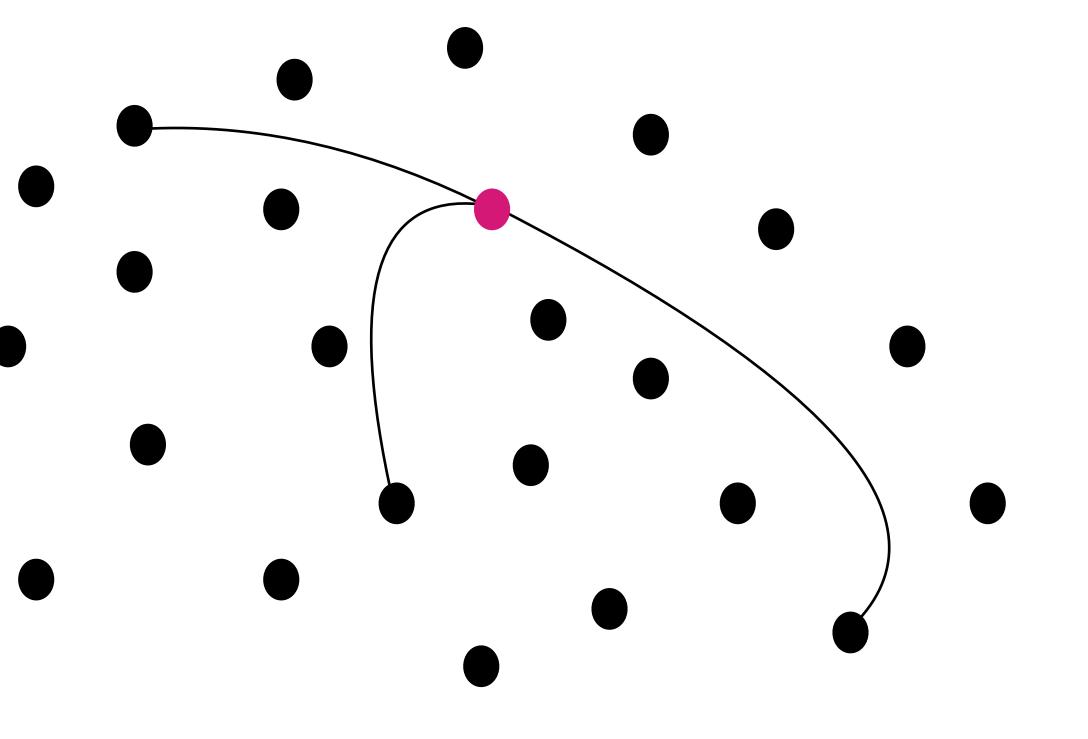
Supersingular isogeny graph $\Gamma_1(p; \mathscr{C})$ We have:

- 1. Vertices: *j*-invariants of supersingular elliptic curves over \mathbb{F}_{p^2}
- 2. Edges: ℓ -isogenies

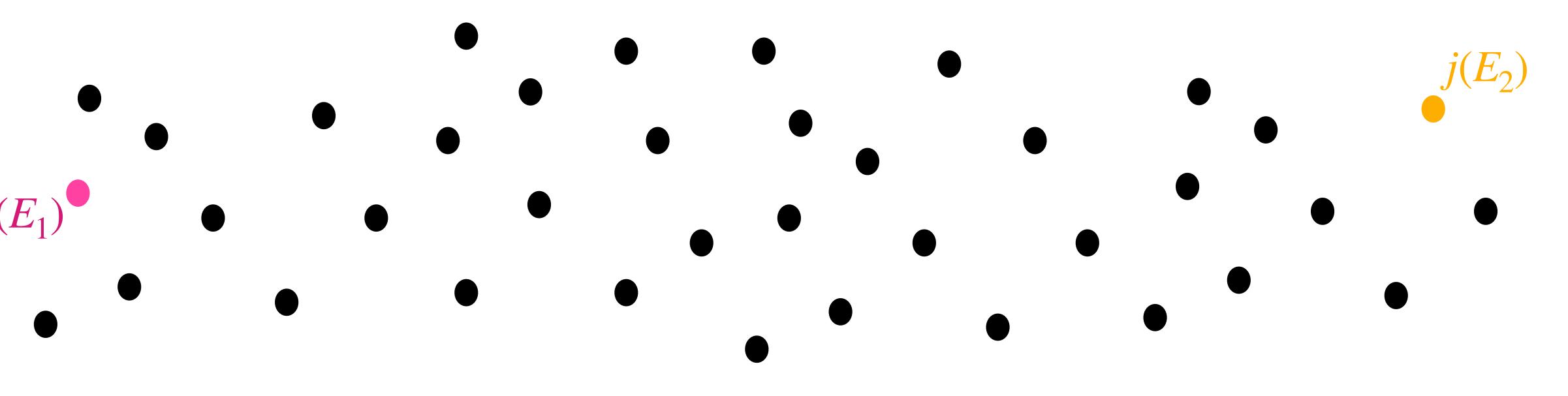
Properties:

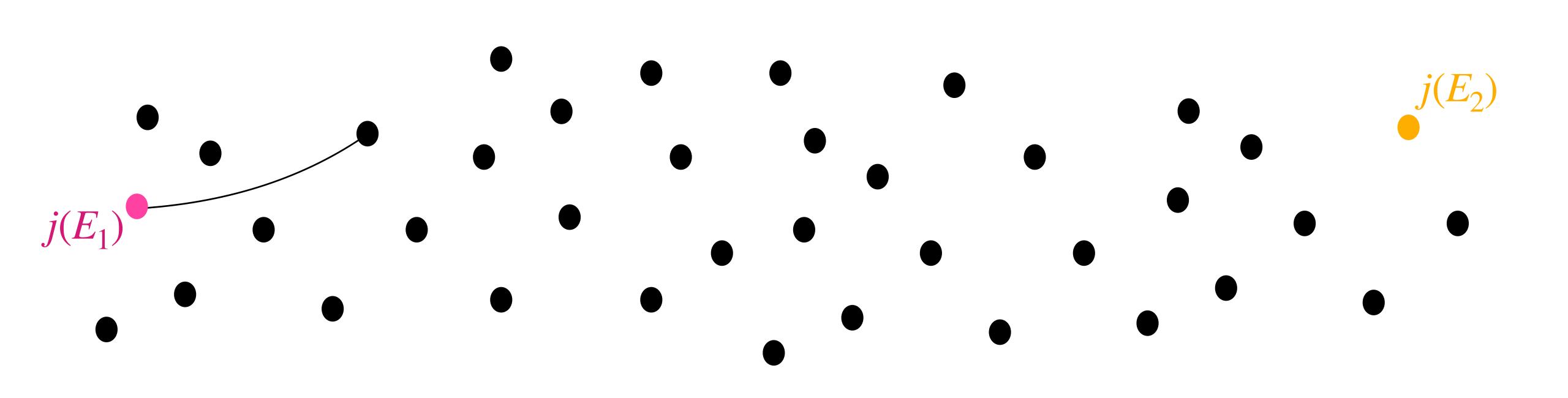
Large: $\sim p/12$ nodes

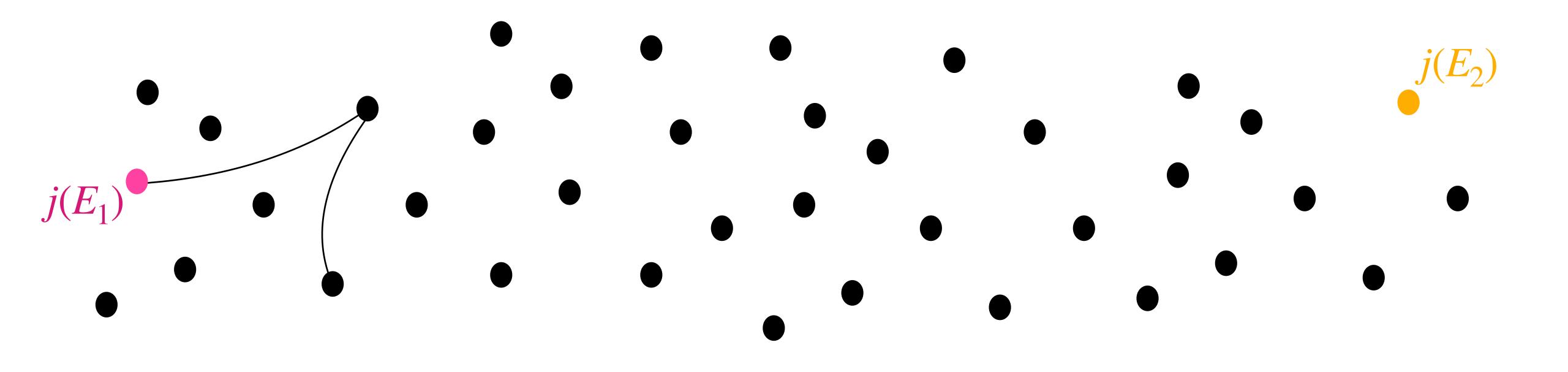
Great mixing (Ramanujan graph!)

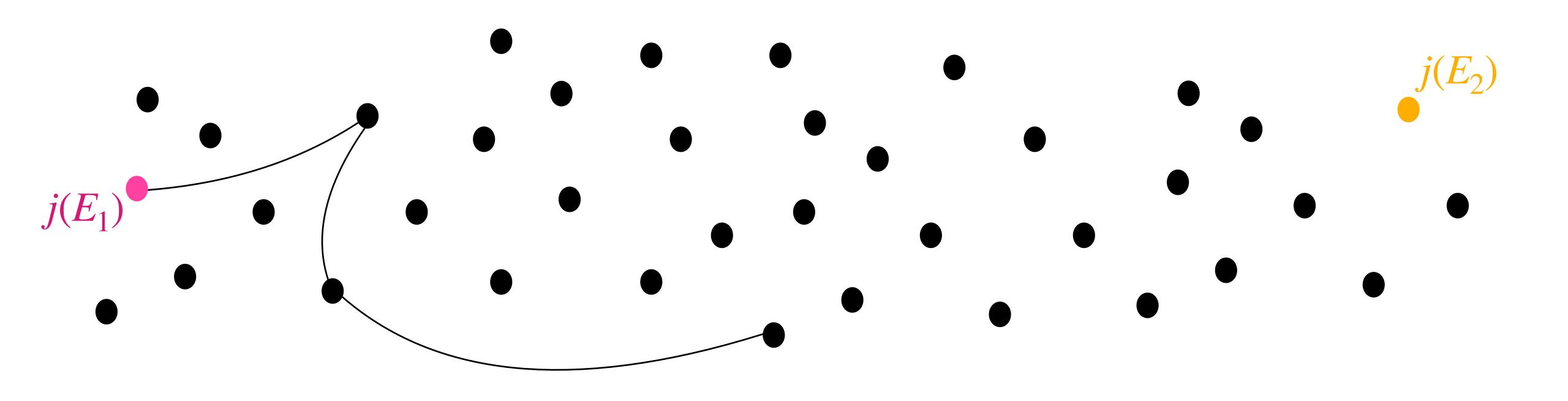


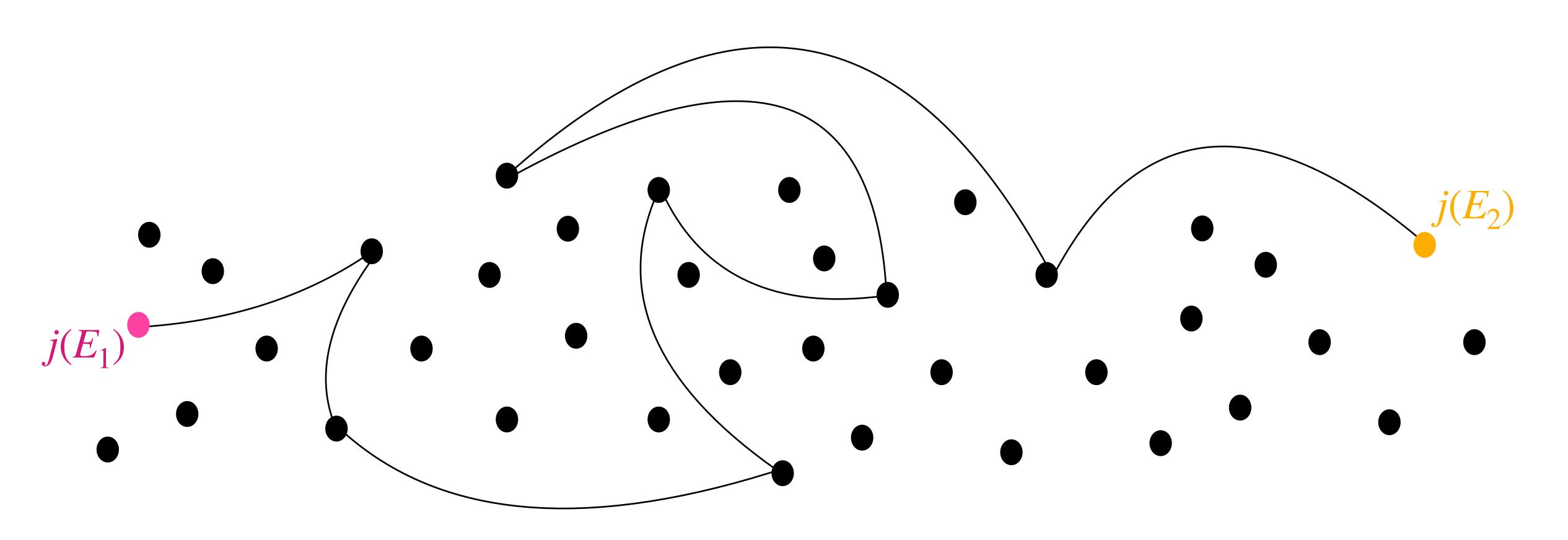
 $\ell = 2$ graph is 3-regular











supersingular isogeny problem in dimension 1.

Problem (The isogeny problem in dimension 1). Given a pair of supersingular elliptic curves E_1 and E_2 over the finite field \mathbb{F}_{p^2} find an isogeny $E_1 \to E_2$.

Theorem (Delfs – Galbraith). There exists a $O(\sqrt{p})$ algorithm to solve the

The dimension 2 case

Why dimension 2?

appears to be crucial in navigating the supersingular isogeny graph in dimension 1.

However comparatively little is actually known about the (superspecial) isogeny graph in dimension 2!

The SIDH attacks showed that understanding higher dimensional isogenies

Abelian surfaces

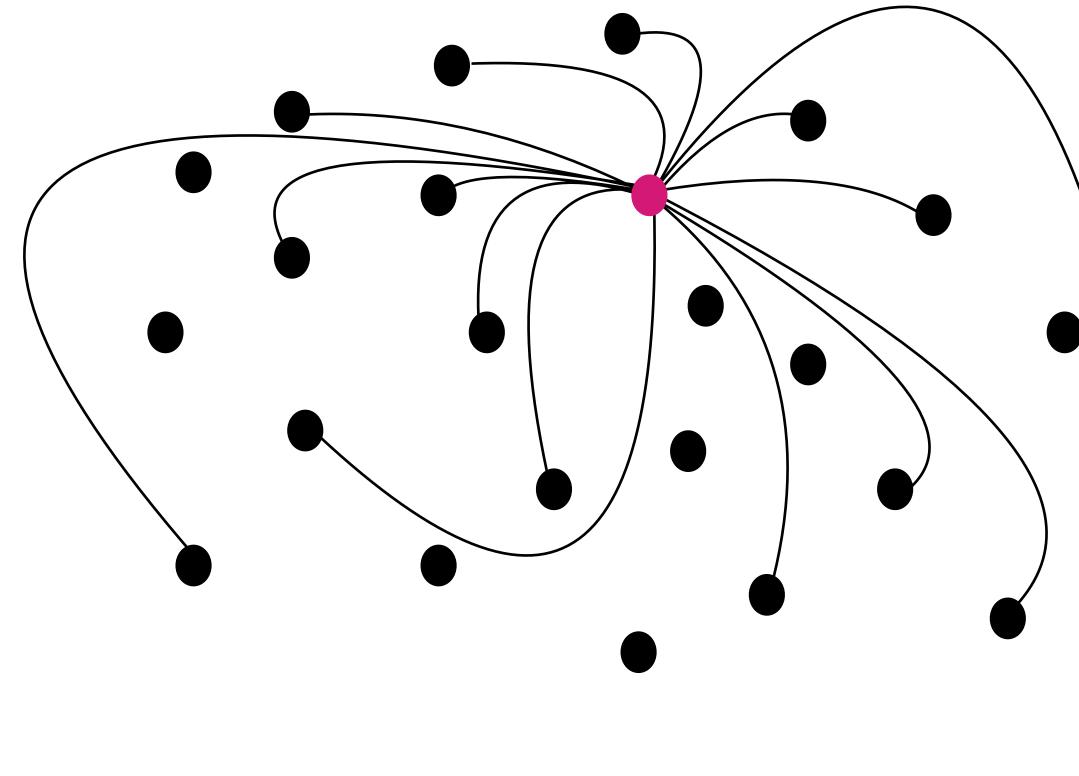
Abelian surfaces come in 2 flavours

- Products of elliptic curves $E_1 \times E_2$
- Jacobians of genus 2 curves Jac(C)

Problem (The isogeny problem in dimension 2). Given a pair of superspecial (p.p.) abelian surfaces A_1 and A_2 over the finite field \mathbb{F}_{p^2} find an isogeny $A_1 \to A_2$.

- 1. Vertices: ($\overline{\mathbb{F}}_p$ -isomorphism classes of p.p.) superspecial abelian surfaces over \mathbb{F}_{p^2}
- 2. Edges: (ℓ, ℓ) -isogenies

- 1. Vertices: ($\overline{\mathbb{F}}_p$ -isomorphism classes of p.p.) superspecial abelian surfaces over \mathbb{F}_{p^2}
- 2. Edges: (ℓ, ℓ) -isogenies



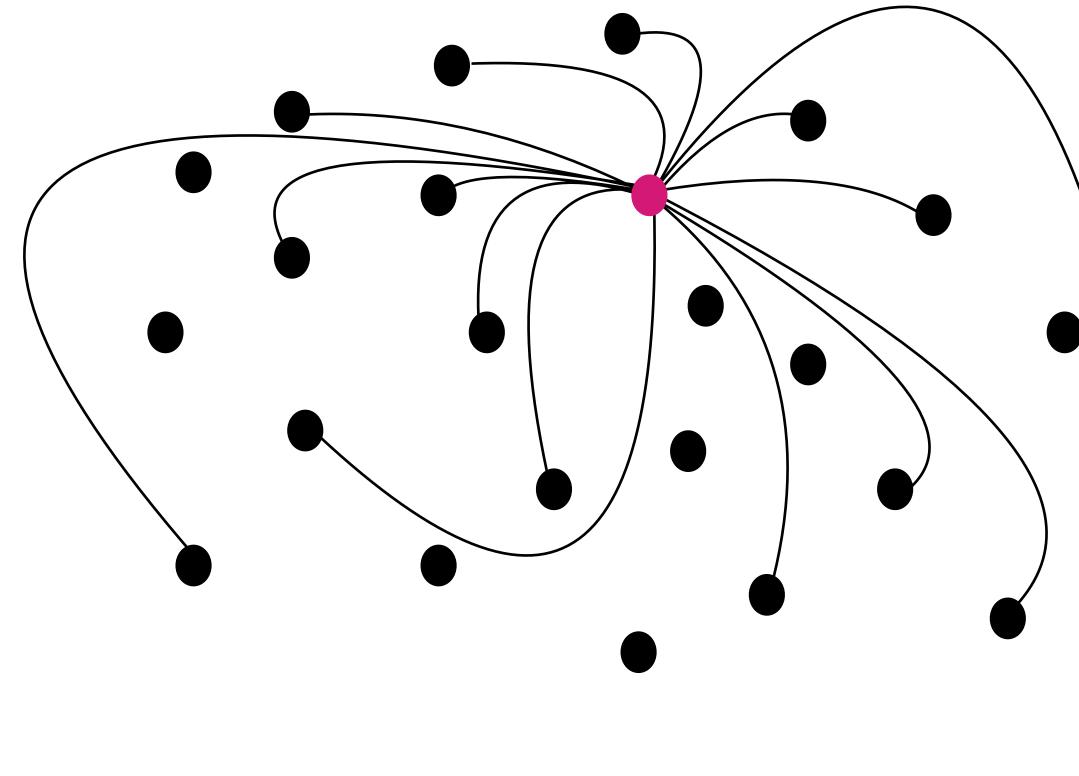
$\ell = 2$ graph is 15-regular

- 1. Vertices: ($\overline{\mathbb{F}}_p$ -isomorphism classes of p.p.) superspecial abelian surfaces over \mathbb{F}_{p^2}
- 2. Edges: (ℓ, ℓ) -isogenies

Properties:

Large:
$$O(p^3)$$
 nodes

Great mixing!



$\ell = 2$ graph is 15-regular

- 1. Vertices: ($\overline{\mathbb{F}}_p$ -isomorphism classes of p.p.) superspecial abelian surfaces over \mathbb{F}_{p^2}
- 2. Edges: (ℓ, ℓ) -isogenies

Properties:

Large: $O(p^3)$ nodes

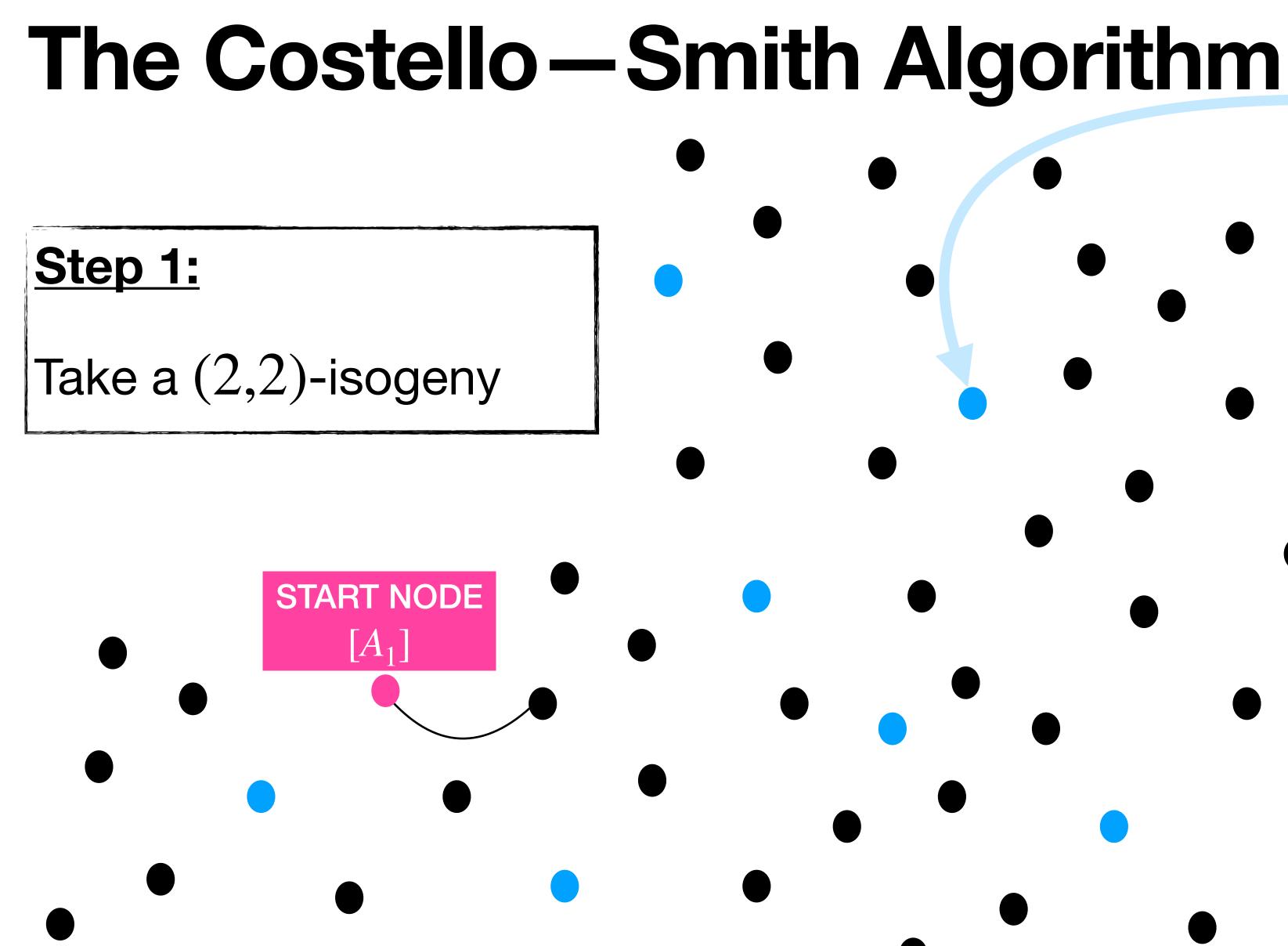
Great mixing!

Writing $\mathcal{S}_2(p)$ for the vertex set of $\Gamma_2(p; \ell)$ we get

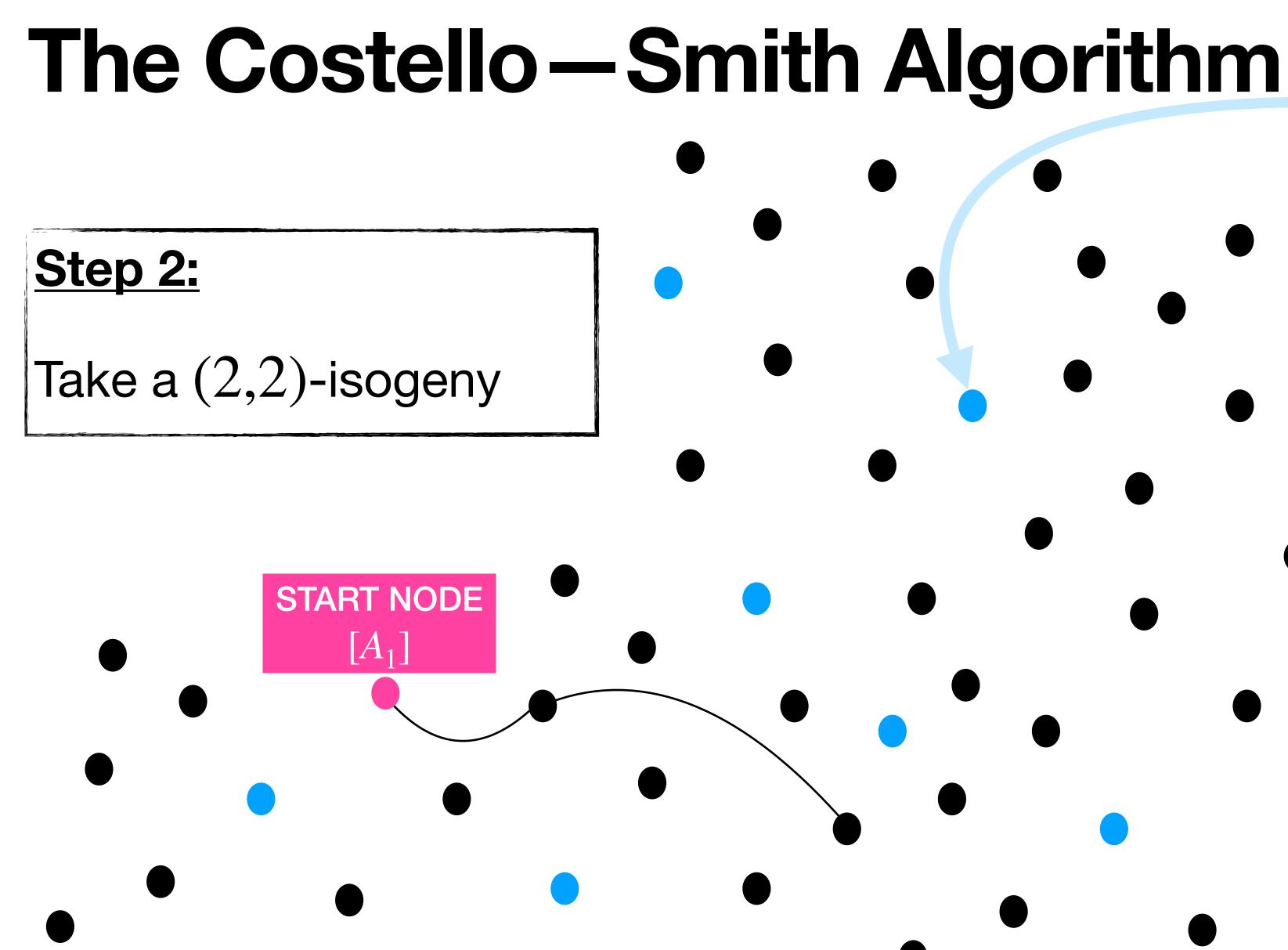
 $\mathcal{S}_2(p) = \mathcal{J}_2(p) \sqcup \mathcal{E}_2(p)$

Jacobians $\sim O(p^3)$

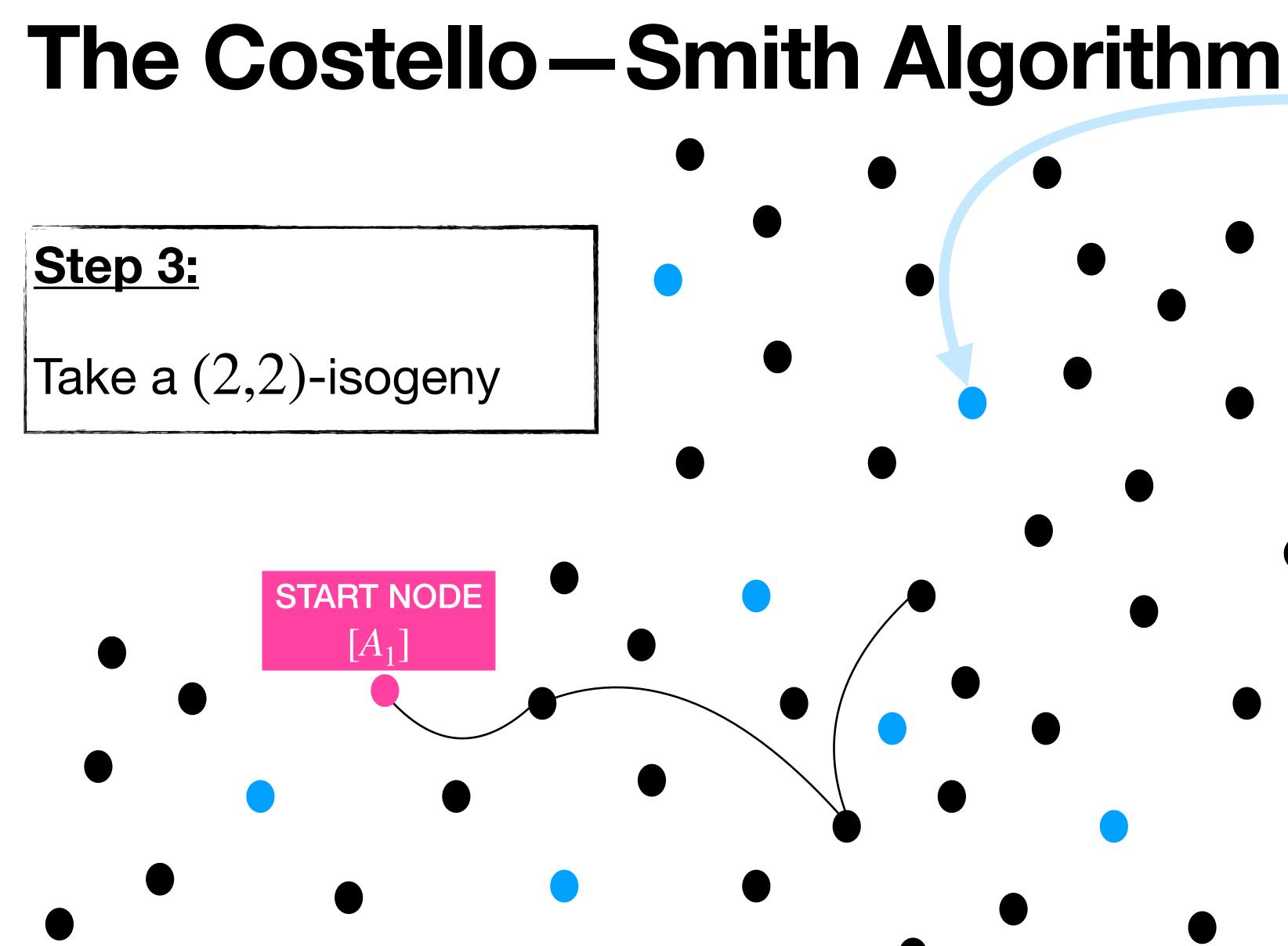
Elliptic products $\sim O(p^2)$



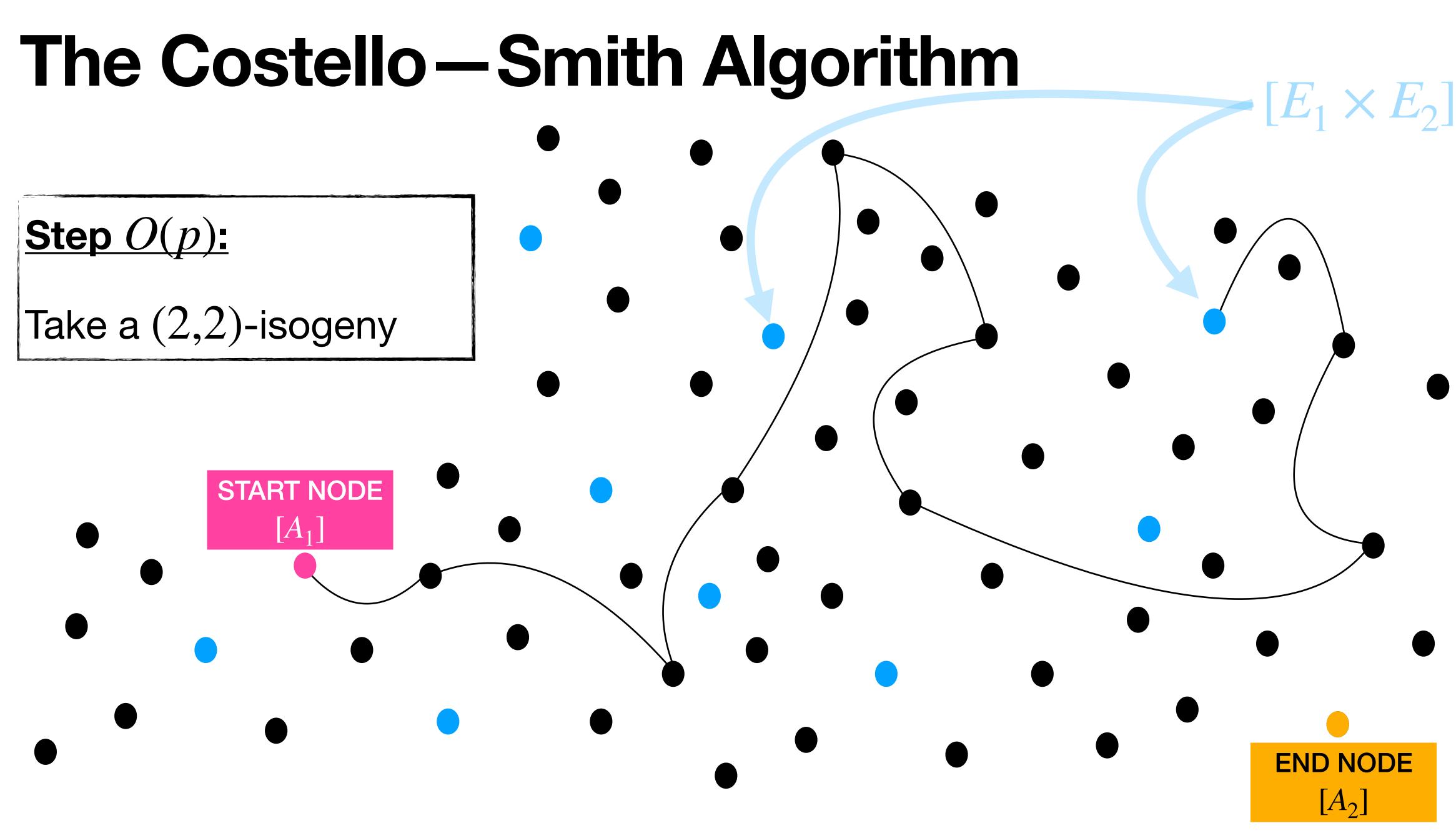
$[E_1 \times E_2]$ **END NODE** $[A_2]$

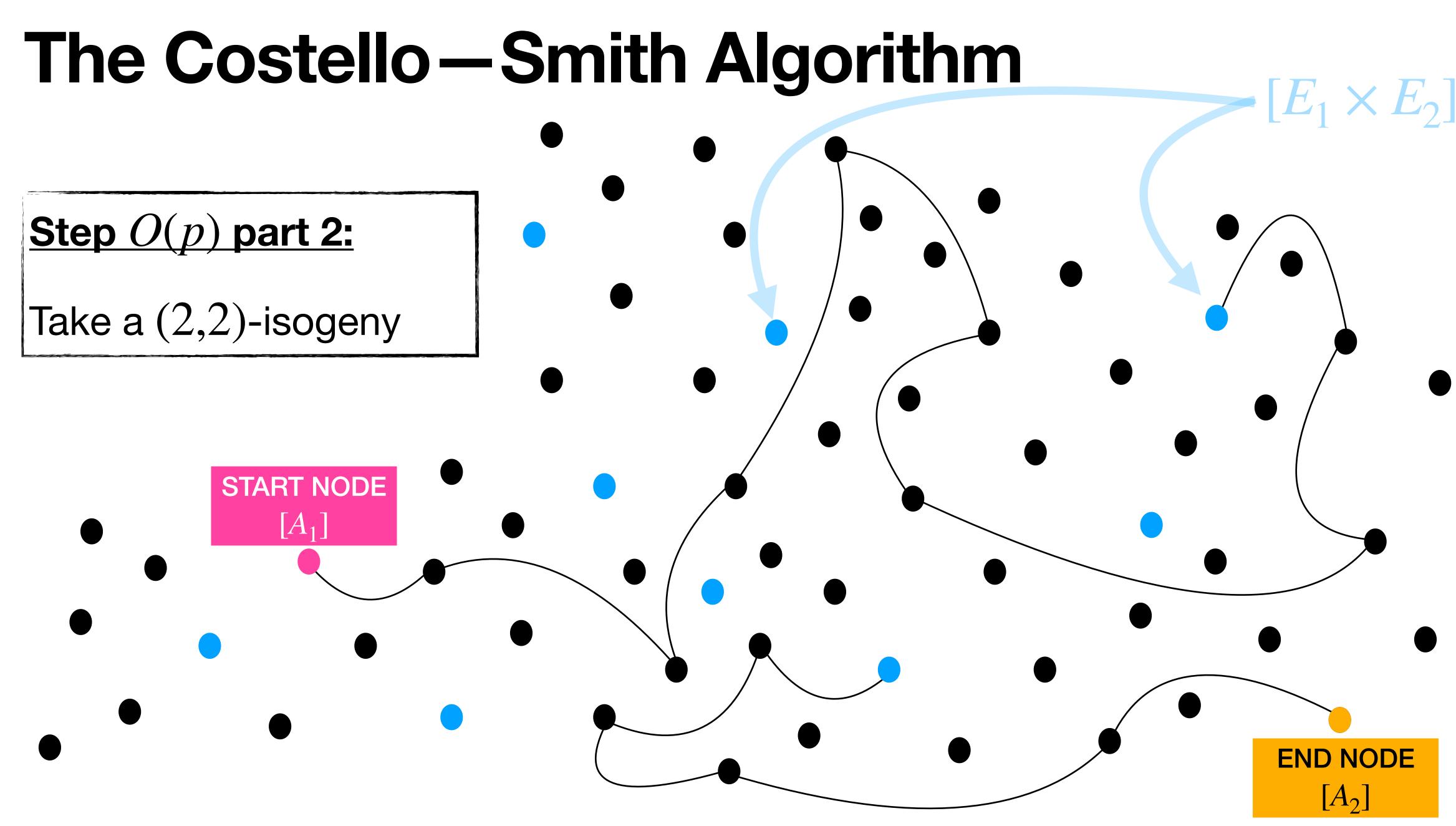


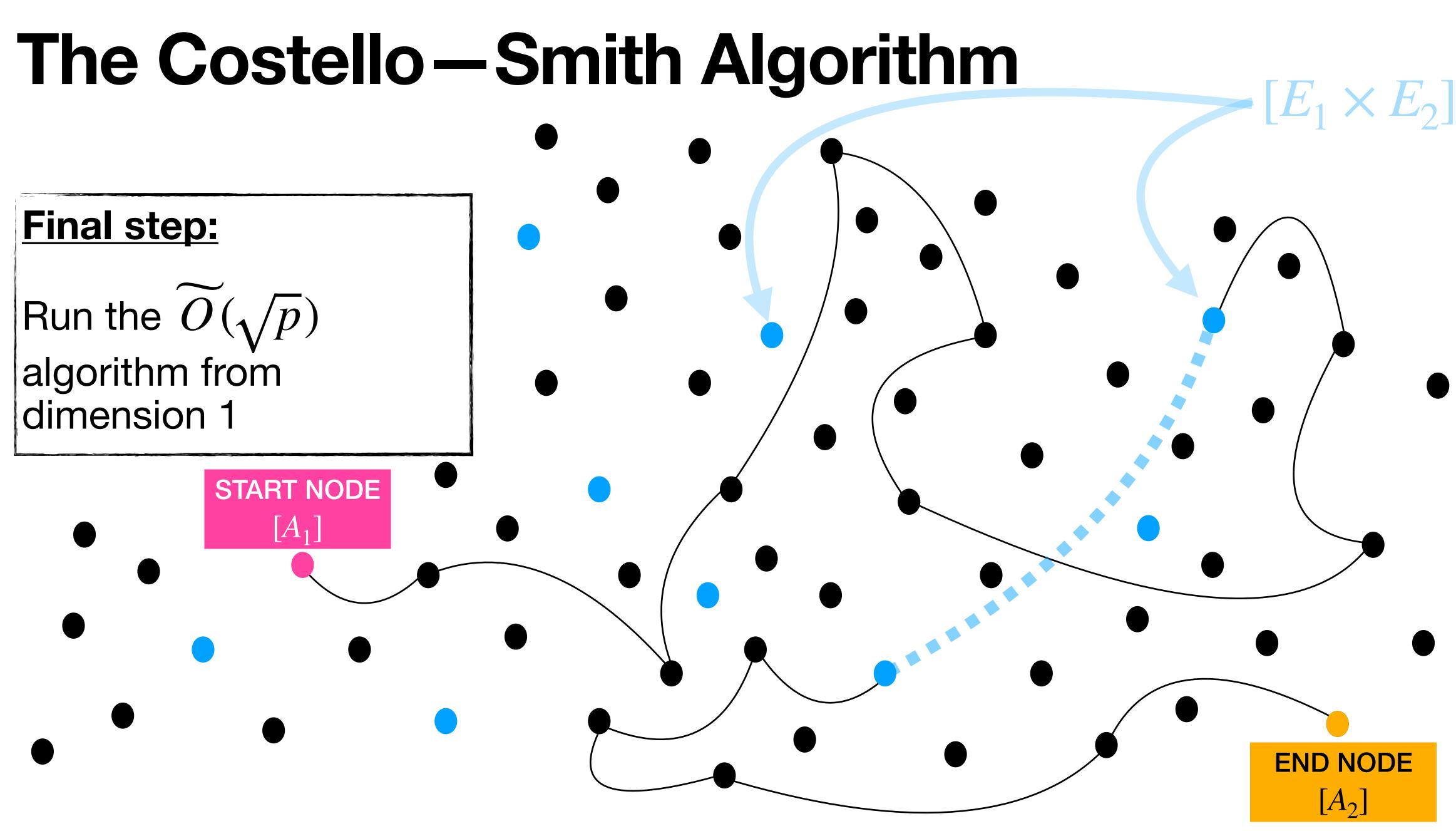
$[E_1 \times E_2]$ **END NODE** $[A_2]$



$[E_1 \times E_2]$ **END NODE** $[A_2]$







The Costello – Smith Algorithm

To summarise the Costello – Smith Algorithm:

- 1. Walk from the start vertex in $\Gamma_2(p; 2)$ until we hit a vertex in $\mathscr{C}_2(p)$

The Costello – Smith Algorithm

To summarise the Costello – Smith Algorithm:

1. Walk from the start vertex in $\Gamma_2(p; 2)$ until we hit a vertex in $\mathscr{E}_2(p)$

There are $O(p^3)$ total vertices in $\Gamma_2(p;2)$ and $O(p^2)$ are in $\mathscr{E}_2(p)$ so this takes O(p) steps

Assuming mild conjecture about distribution of $\mathscr{C}_2(p)$ in the graph

The Costello – Smith Algorithm

To summarise the Costello – Smith Algorithm:

- 1. Walk from the start vertex in $\Gamma_2(p; 2)$ until we hit a vertex in $\mathscr{C}_2(p)$
- 2. Walk from the end vertex in $\Gamma_2(p;2)$ until we hit a vertex in $\mathscr{C}_2(p)$
- 3. Run the algorithm in dimension 1
- 4. Return the path.

problem in dimension 2.

O(p) $\widetilde{O}(p)$

Theorem (Costello – Smith). There exists a O(p) algorithm to solve the isogeny

Splittings and accelerating Costello—Smith

(N, N) — splittings

Every (p.p.) superspecial abelian surface has

(N, N)-isogenous neighbours. This is ~ N^3 .

Compute all (N, N)—isogenous neighbours for big N.

 $D_N = N^3 \prod_{\ell \mid N} \frac{1}{\ell^3} (\ell + 1)(\ell^2 + 1)$

(N, N) — splittings

Every (p.p.) superspecial abelian surface has

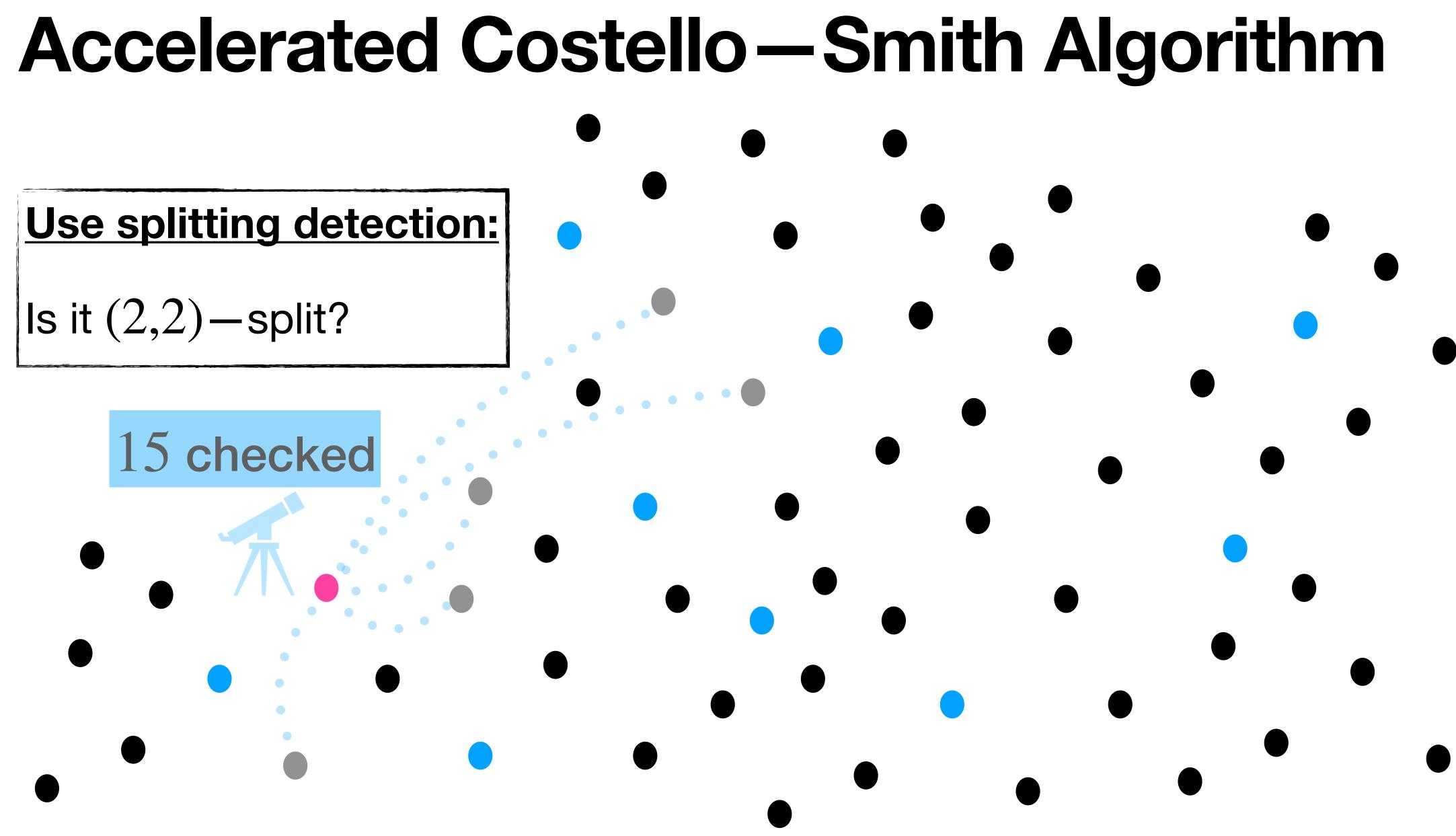
$$D_N = N^3 \prod_{\ell \mid N}$$

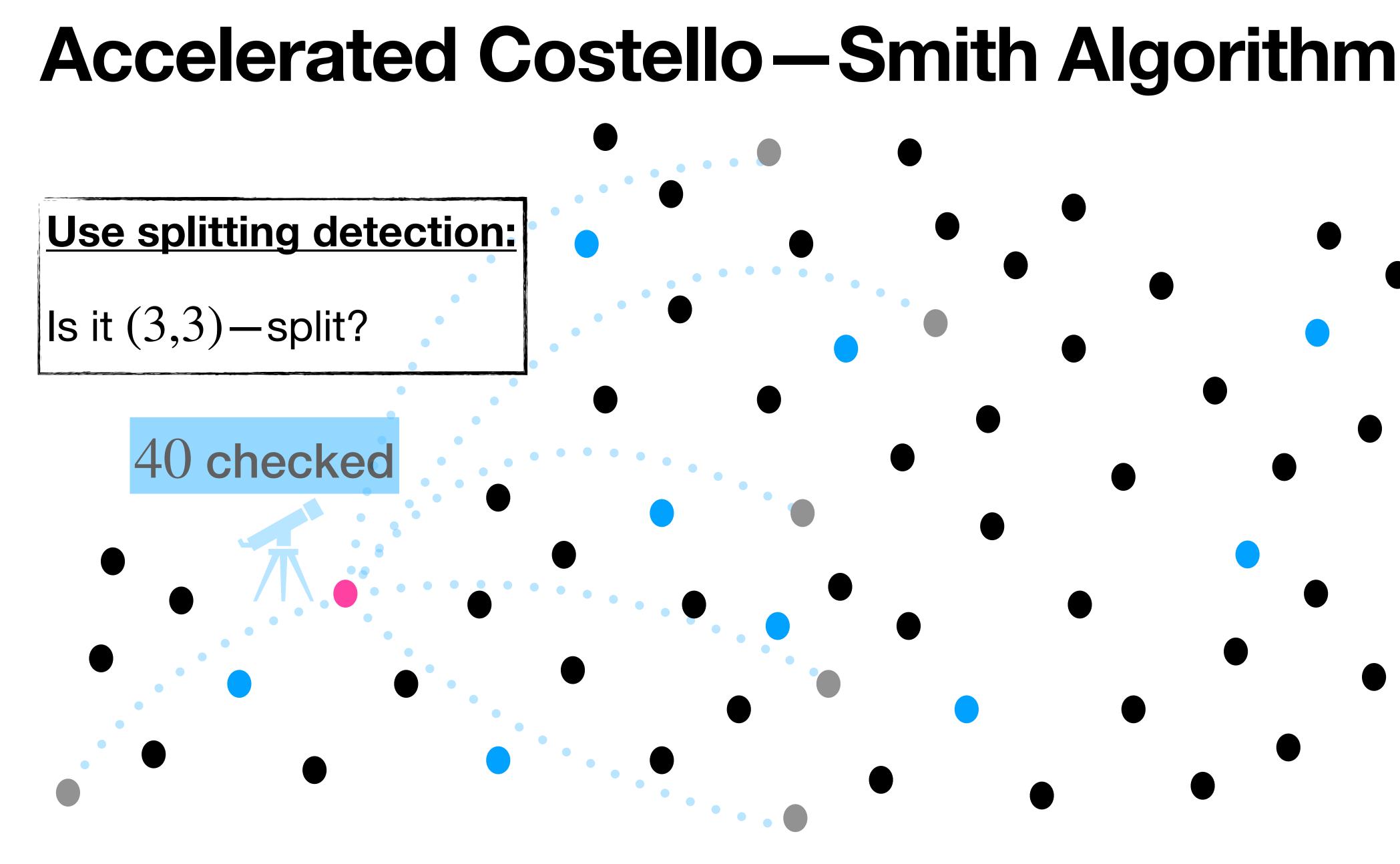
(N, N)-isogenous neighbours. This is ~ N^3 .

Detect if any (N, N) – isogenous neighbour is $E \times E'$ in one go!

 $\left[\frac{1}{\ell^{3}}(\ell+1)(\ell^{2}+1)\right]$

N)—split



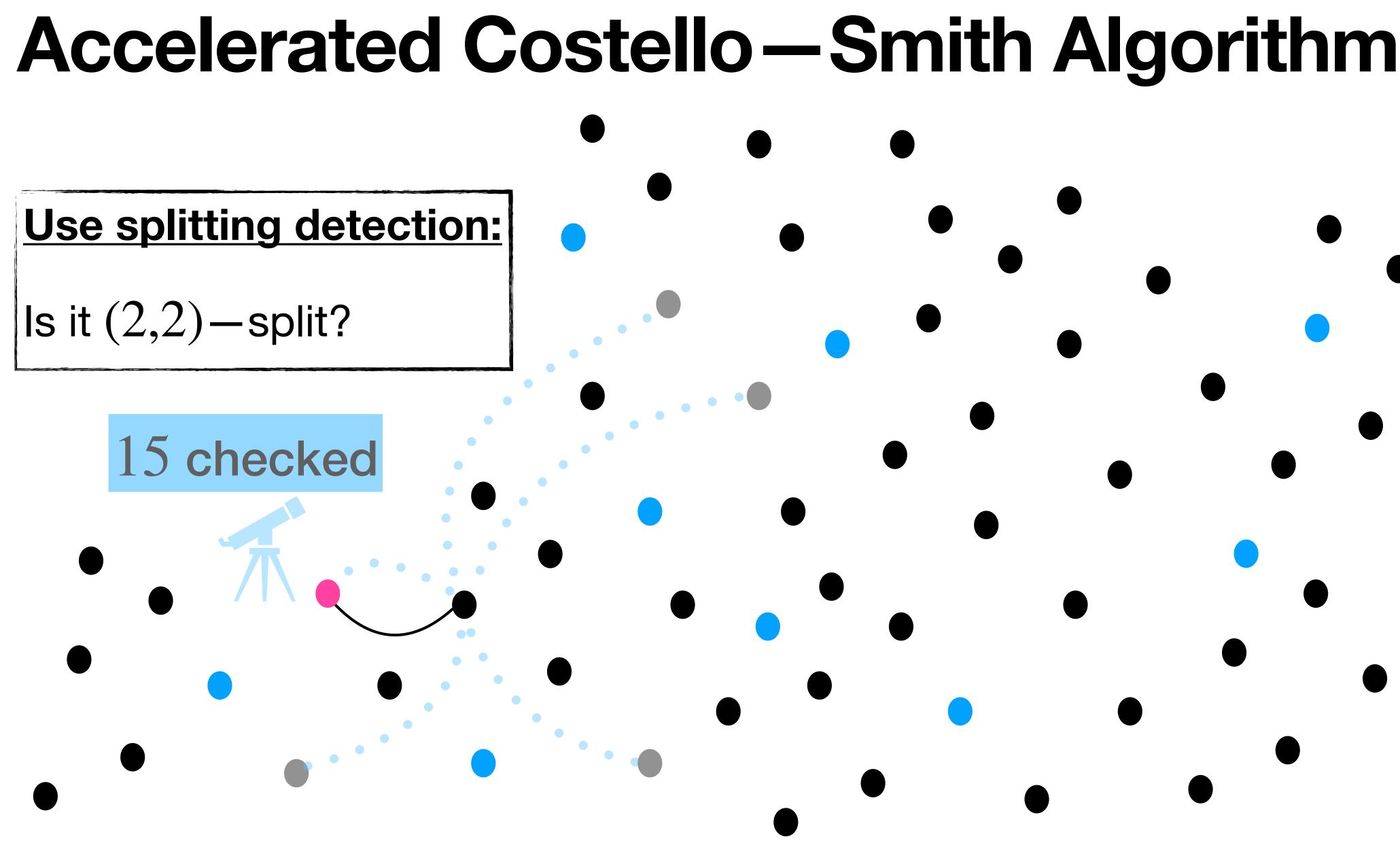


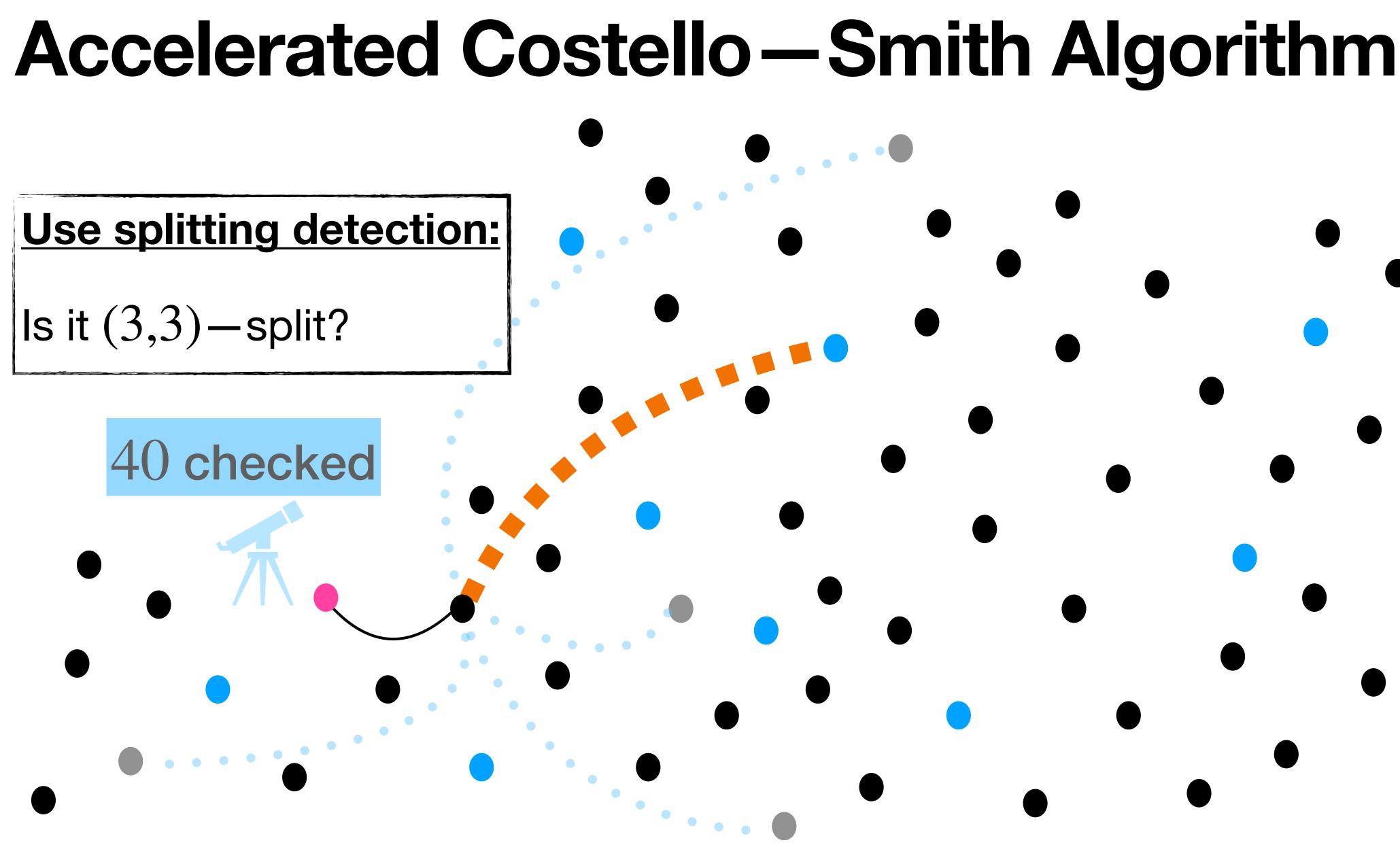
Accelerated Costello – Smith Algorithm

Appropriate is an interesting question. The bigger the telescope the costlier it will be to build

Etc, etc, etc, for , appropriate N

Accelerated Costello – Smith Algorithm **Didn't find a splitting?** Take a (2,2) – step





Detect if Jac(C) is (N, N) – split.

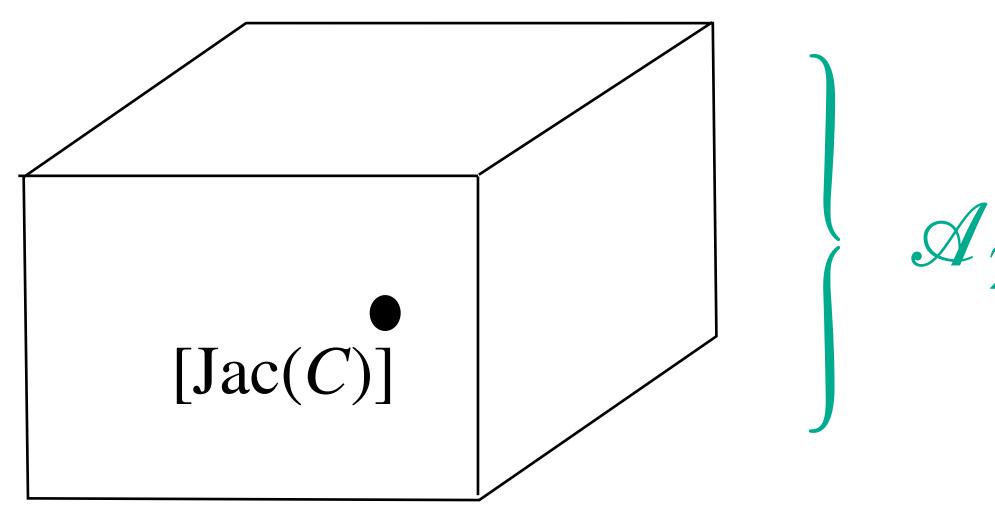
Fact 1. There exist 3 (normalised) "Igusa—Clebsch invariants"

Like the *j*-invariant these are a few multiplications to compute

$j_1(C), j_2(C), j_3(C)$ which uniquely determine isomorphism classes [Jac(C)].

Detect if Jac(C) is (N, N) – split.

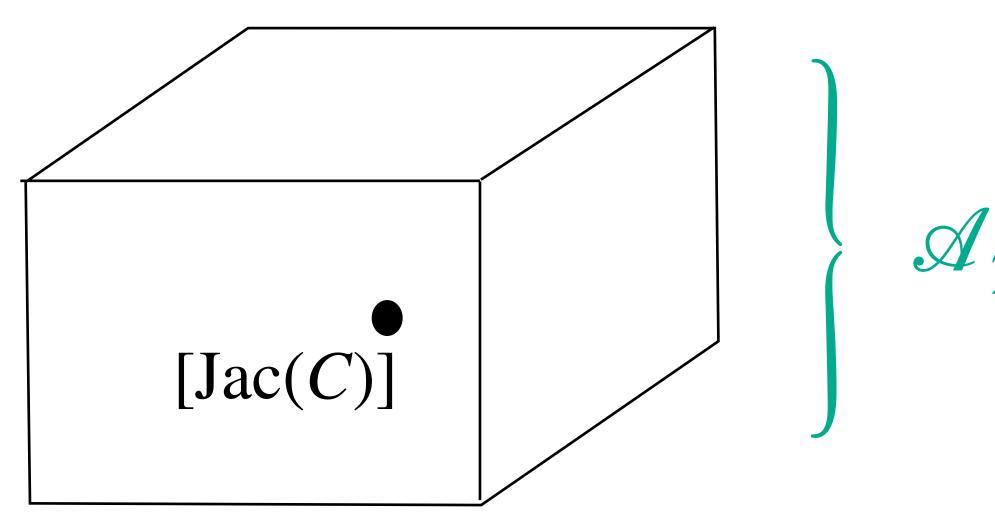
Fact 1. There exist 3 (normalised) "Igusa—Clebsch invariants"



$j_1(C), j_2(C), j_3(C)$ which uniquely determine isomorphism classes [Jac(C)].

$\mathscr{A}_2 \approx \{\text{p.p. ab. surfaces}\}/\sim$

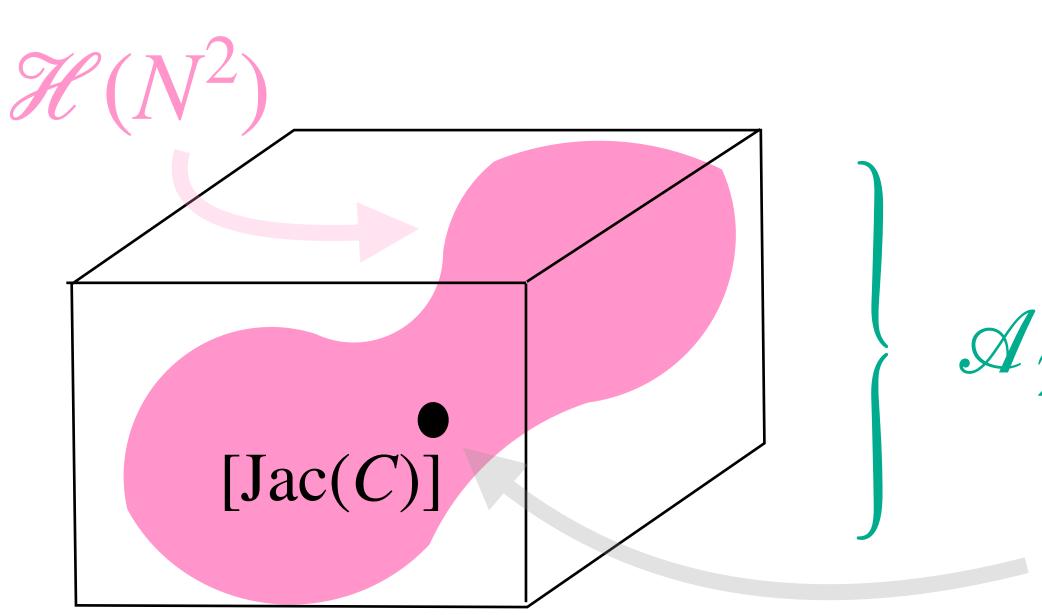
Detect if Jac(C) is (N, N) – split.



Fact 2. There exists a "Humbert surface" $\mathscr{H}(N^2) \subset \mathscr{A}_2$ such that Jac(C) is (N, N)—split if and only if the point $[Jac(C)] \in \mathscr{H}(N^2) \subset \mathscr{A}_2$.

$\mathcal{A}_2 \approx \{\text{p.p. ab. surfaces}\}/\sim$

Detect if Jac(C) is (N, N) – split.

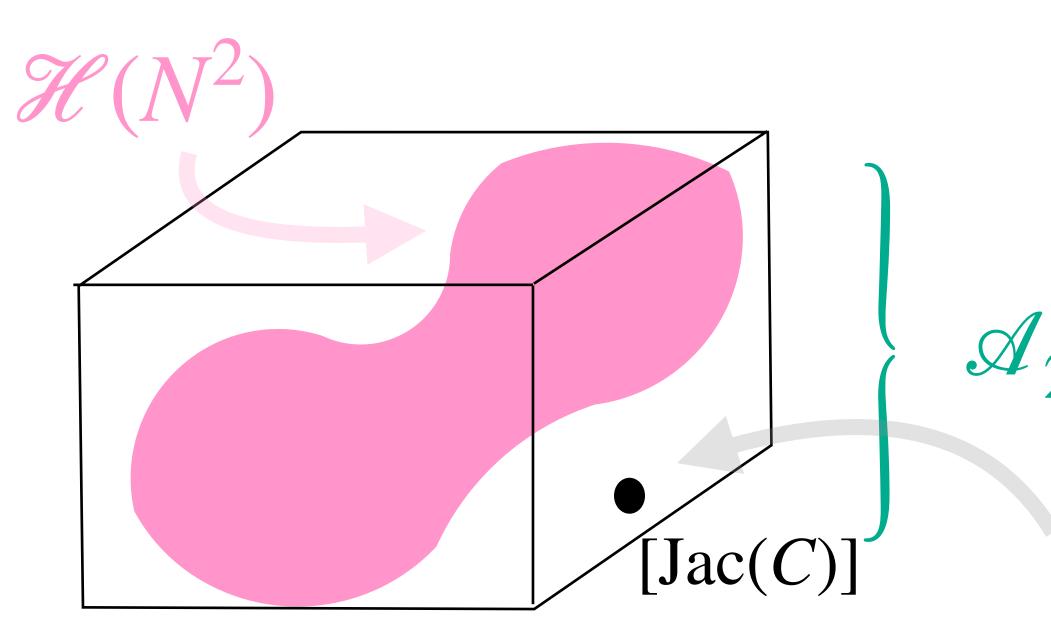


<u>Fact 2</u>. There exists a "Humbert surface" $\mathscr{H}(N^2) \subset \mathscr{A}_2$ such that Jac(C) is (N, N)—split if and only if the point $[Jac(C)] \in \mathscr{H}(N^2) \subset \mathscr{A}_2$.

$\mathscr{A}_2 \approx \{\text{p.p. ab. surfaces}\}/\sim$

(N, N)-split

Detect if Jac(C) is (N, N) – split.



<u>Fact 2</u>. There exists a "Humbert surface" $\mathscr{H}(N^2) \subset \mathscr{A}_2$ such that Jac(C) is (N, N)—split if and only if the point $[Jac(C)] \in \mathscr{H}(N^2) \subset \mathscr{A}_2$.

$\mathscr{A}_2 \approx \{\text{p.p. ab. surfaces}\}/\sim$

Not (N, N)-split

Detecting (N, N) – splittings $\mathbb{A}_{r,s}^2$ $\varphi_{N^2} = (\alpha_1, \alpha_2, \alpha_3)$ Explicit polynomials! $\mathscr{A}_2 \approx \{\text{p.p. ab. surfaces}\}/\sim$

<u>Theorem</u> (Kumar). For $N \leq 11$

Detecting (N, N) – splittings Approach:

- Jac(C) is (N, N)-split $\Leftrightarrow \exists r, s \in \mathbb{F}_p$ such that
 - $\alpha_1(r,s) = j_1(C)$ and $\alpha_2(r,s) = j_2(C)$ and $\alpha_3(r,s) = j_3(C)$

Check if there is a solution to the equations

- $\alpha_1(r,s)$
- $\alpha_2(r,s)$
- $\alpha_3(r,s) j_3(C) = 0$

Only a handful of multiplications for small N

$$-j_1(C) = 0$$

 $-j_2(C) = 0$

Use techniques like resultants, polynomial gcd

What's the speed-up?

Speed-up

N	Total $\#\mathbb{F}_p$ mults.	Total $\#\mathbb{F}_p$ mults. per node revealed		
2	175	12.5		
3	767	19.2		
4	4882	46.9		
5	18818	120.6		
6	29188	52.1		
7	182641	456.6		
8	325606	395.2		
9	582474	539.3		
10	1082007	495.4		
11	3237198	2211.2		

Cost of a (2,2)-step					
p (bits)	\mathbb{F}_p -mults. per node				
50	579				
100	1176				
150	1575				
•	• • •				
950	9772				
1000	11346				

Speed-up

	Walks in $\Gamma_2(2; p)$ without additional searching [17] (optimised in Section 3)	w. split searc	Walks in $\Gamma_2(2; p)$ split searching in $\Gamma_2(N; p)$ This work	
p (bits)	\mathbb{F}_p -mults. per node	set $N \in \{\dots\}$	\mathbb{F}_p -mults. per node	improv. factor
50	579	$\{2,3\}$	35	16.5x
100	1176	$\{2,3\}$	48	$\mathbf{24.5x}$
150	1575	$\{3,4\}$	54	$\mathbf{29.2x}$
:	• •	•	:	:
950	9772	$\{4, 6\}$	69	141.6x
1000	11346	$\{4,6\}$	71	159.8x

Further work

Endomorphisms

Humbert surfaces exist for discriminants all discriminants D and parametrise abelian surfaces with an endomorphism of degree D. The same techniques work!

Question. If you know that A_1 and A_2 endomorphisms of small degree, can you give an algorithm better than the $\widetilde{O}(p)$ Costello—Smith algorithm to solve the superspecial isogeny problem?

